AUTOMATIC CAPTION FEATURES ON GOOGLE MEET AS A PRONUNCIATION ASSESSMENT TOOL

Boris Ramadhika, Rolisda Yosintha, Sukma Shinta Yunianti

Abstract


ABSTRACT

This study aims to find out the use Google Meet Automatic Caption feature to assist teachers of non-native English to assess their students' English pronunciation. We used a mixed-method with the explanatory-sequential approach following it. This research study was done at Tidar University with 12 participants, further reduced to 4 in the participant selection step. As the data were both quantitative and qualitative, we used the Word Error Rate (WER) formula quantitatively and Qualitative Content Analysis qualitatively. The findings show that Artificial Intelligence (AI) has a very sensitive system in transforming sounds into written forms. It also has an auto-correction system that sometimes can substitute a word with a meaningless one if a speaker pronounces the word unclearly or to the nearest word if a speaker mispronounces it. Even though it does not accurately process the punctuation and there is no sufficient correction on grammar, we believe the AI can help teachers in a pronunciation assessment.

ABSTRAK

Penelitian ini bertujuan untuk mengetahui penggunaan fitur Teks Otomatis pada Google Meet untuk membantu para guru Bahasa Inggris bukan penutur asli saat menilai pengucapan bahasa Inggris siswa mereka. Kami menggunakan metode penelitian campuran dengan pendekatan eksplanatori-sekuensial. Penelitian ini dilakukan di Universitas Tidar dengan jumlah peserta sebanyak 12 orang yang dikurangi menjadi 4 orang pada tahap seleksi peserta. Data penelitian bersifat kuantitatif dan kualitatif. Untuk menganalisa data secara kuantitatif digunakan rumus Word Error Rate (WER). Sedangkan, secara kualitatif mengunakan Analisis Isi Kualitatif. Hasil penelitian menunjukkan bahwa AI (Artificial Intelligence/ Kecerdasan buatan) memiliki sistem yang sangat sensitif dalam mengubah suara menjadi bentuk tulisan. Fitur ini juga memiliki sistem koreksi otomatis yang terkadang dapat menggantikan kata yang tidak berarti jika pembicara mengucapkan kata dengan tidak jelas atau diubah ke kata terdekat jika pembicara salah mengucapkan kata tersebut. Meskipun tidak memproses tanda baca secara akurat dan tidak ada koreksi yang memadai pada tata bahasa, kami yakin AI dapat membantu para guru dalam penilaian pengucapan.

 

How to Cite: Ramadhika, B., Yosintha, R., Yunianti, S. S. (2022). Automatic Caption Features on Google Meet as a Pronunciation Assessment Tool. IJEE (Indonesian Journal of English Education), 9(2), 396-410. doi:10.15408/ijee.v9i2.22482


Keywords


assessment; automatic caption; google meet; pronunciation; penilaian; teks otomatis; google meet; pengucapan

References


Cheng, V. C. W., Lau, V. K. T., Lam, R. W. K., Zhan, T. J., & Chan, P. K. (2020). Improving english phoneme pronunciation with automatic speech recognition using voice chatbot. Communications in Computer and Information Science (Vol. 1302, pp. 88–99). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-981-33-4594-2_8

Cohen, A., & Ezra, O. (2018). Development of a contextualized MALL research framework based on L2 Chinese empirical study. Computer Assisted Language Learning, 31(7), 764–789. https://doi.org/10.1080/09588221.2018.1449756

Dixon, D. H. (2018). Use of Technology in Teaching Pronunciation Skills. In The TESOL Encyclopedia of English Language Teaching (pp. 1–7). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118784235.eelt0692

Edmonds, W. A., & Kennedy, T. D. (2020). An Applied Guide to Research Designs: Quantitative, Qualitative, and Mixed Methods. In An Applied Guide to Research Designs: Quantitative, Qualitative, and Mixed Methods. SAGE Publications, Inc. https://doi.org/10.4135/9781071802779

Evers, K., & Chen, S. (2020). Effects of an automatic speech recognition system with peer feedback on pronunciation instruction for adults. Computer Assisted Language Learning. https://doi.org/10.1080/09588221.2020.1839504

Hoi, V. N., & Mu, G. M. (2021). Perceived teacher support and students’ acceptance of mobile-assisted language learning: Evidence from Vietnamese higher education context. British Journal of Educational Technology, 52(2), 879–898. https://doi.org/10.1111/bjet.13044

Hunt-Gómez, C. I., & Navarro-Pablo, M. (2020). ANALYSIS OF PRE-SERVICE FOREIGN LANGUAGE TEACHERS’ INCORRECT ARTICULATIONS: FREQUENCY, INFLUENCE ON COMMUNICATION, AND A SPECIFIC CORRECTIVE STRATEGY. Problems of Education in the 21st Century, 78(6), 933–947. https://doi.org/10.33225/pec/20.78.933

Isabelle, D. (2018). Powerful and effective pronunciation instruction: how can we achieve It? The Catesol Journal. 30.1, 13-45.

KimHeyoung, & Kwon, Y. (2012). Exploring Smartphone Applications for Effective Mobile-Assisted Language Learning. Multimedia-Assisted Language Learning. 15(1), 31-57. https://doi.org/10.15702/mall.2012.15.1.31

Klakow, D., & Peters, J. (2002). Testing the correlation of word error rate and perplexity. Speech Communication, 38(1–2), 19–28. https://doi.org/10.1016/S0167-6393(01)00041-3

Lee, J. H., & Cha, K. W. (2020). An analysis of the errors in the auto-generated captions of university commencement speeches on youtube. Journal of Asia TEFL, 17(1), 143–159. https://doi.org/10.18823/asiatefl.2020.17.1.9.143

Malik, M., Malik, M. K., Mehmood, K., & Makhdoom, I. (2021). Automatic speech recognition: a survey. Multimedia Tools and Applications, 80(6), 9411–9457. https://doi.org/10.1007/s11042-020-10073-7

Mayring, P. (2019). Qualitative content analysis: Demarcation, varieties, developments. Forum Qualitative Sozialforschung, 20(3). https://doi.org/10.17169/fqs-20.3.3343

Nelson, P. (2020, December 6). Google Meet live caption support now available in French, German, Portuguese, and Spanish | Google Cloud Blog. https://cloud.google.com/blog/products/google-meet/live-captioning-in-google-meet-expanding-to-4-new-languages

Prabhavalkar, R., Sainath, T. N., Wu, Y., Nguyen, P., Chen, Z., Chiu, C. C., & Kannan, A. (2018). Minimum Word Error Rate Training for Attention-Based Sequence-to-Sequence Models. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings (Vol. 2018-April, pp. 4839-4843). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICASSP.2018.8461809

Rayshata, C. E., & Ciptaningrum, D. S. (2020). Automatic speech recognition to enhance EFL students’ pronunciation through Google’s Voice Search Application. In English Linguistics, Literature, and Language Teaching in a Changing Era (pp. 115–122). Routledge. https://doi.org/10.1201/9780429021039-15

Ryan, S., & Ryuji, T. (2021). Assessing the Practicality of Using an Automatic Speech Recognition Tool to Teach English Pronunciation Online. STEM Journal, 22(2), 93–104. https://doi.org/10.16875/stem.2021.22.2.93

Soni, M., Sheikh, I., & Kopparapu, S. K. (2019). Label-Driven Time-Frequency Masking for Robust Speech Command Recognition. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 11697 LNAI, pp. 341–351). Springer Verlag. https://doi.org/10.1007/978-3-030-27947-9_29


Full Text: PDF

DOI: 10.15408/ijee.v9i2.22482

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.