DEVELOPMENT OF REDOX REACTION LEARNING MEDIA BASED ON MULTIPLE REPRESENTATIONS
DOI:
https://doi.org/10.15408/es.v16i1.35713Keywords:
learning media, android application, multiple level representation, redoxs material.Abstract
The use of Information & Communication Technology (ICT) media is widespread in education, thus necessitating the facilitation of chemistry learning activities that guide students to study redox materials. This research aims to design a learning media product—an android application—on redox reaction materials based on MLR and to determine the feasibility level of this learning media product. The research method employed is a modified 4-D model reduced to 3-D, which includes the stages of define, design, and develop. The research instruments include interview sheets, student needs questionnaires, student learning styles, validation by subject matter and media experts, as well as student responses. The final results of this research reveal that the Android application learning media product on redox materials based on MLR is deemed feasible. This is supported by the Aiken's V coefficient value of 0.86 which is in the very feasible category, and limited development trials achieving an ideal percentage of 80.65%, falling into the feasible category.References
Astiningsih, A. D., & Partana, C. F. (2020). Using android media for chemistry learning construction of motivation and metacognition ability. International Journal of Instruction, 13(1), 279–294. https://doi.org/10.29333/iji.2020.13119a
Azwar, S. (2012). Reliabilitas dan Validitas. Yogyakarta: Pustaka Belajar.
Cahyana, U., Fitriani, E., & Utari, W. (2021). Development of mobile learning integration with scientific approaches on electrolyte solution and redox reaction. Journal of Physics: Conference Series, 1869(1). https://doi.org/10.1088/1742-6596/1869/1/012036
Cahyana, U., Paristiowati, M., & Fauziyah, S. (2018). Development of Android-Based Mobile learning media on Atomic Structure and Periodic Table. IOP Conference Series: Materials Science and Engineering, 434(1). https://doi.org/10.1088/1757-899X/434/1/012095
Davidowitz, B., Chittleborough, G., & Murray, E. (2010). Student-generated submicro diagrams: A useful tool for teaching and learning chemical equations and stoichiometry. Chemistry Education Research and Practice, 11(3), 154–164. https://doi.org/10.1039/c005464j
DePorter, Bobby., & Hernacki, M. (1992). Quantum Learning: Unleash The Genius Within You. London: Judy Piatkus.
Ewais, A., Hodrob, R., Maree, M., & Jaradat, S. (2021). Mobile Learning Application for Helping Pupils in Learning Chemistry. International Journal of Interactive Mobile Technologies, 15(1), 105–118. https://doi.org/10.3991/IJIM.V15I01.11897
Farida, I., Liliasari, L., Sopandi, W., & Widyantoro, D. H. (2017). A web-based model to enhance competency in the interconnection of multiple levels of representation for pre-service teachers. Ideas for 21st Century Education, 359–362. https://doi.org/10.1201/9781315166575-72
Fibonacci, A., Azizati, Z., & Wahyudi, T. (2020). Development of Education for Sustainable Development (Esd) Based Chemsdro Mobile Based Learning for Indonesian Junior High School: Rate of Reaction. JTK (Jurnal Tadris Kimiya), 5(1), 26–34. https://doi.org/10.15575/jtk.v5i1.5908
Fitriyah, I. J., Marsuki, M. F., & Affriyenni, Y. (2022). Development of E-learning Based on Augmented Reality (AR) on Reduction-Oxidation Reaction Topic. International Journal of Interactive Mobile Technologies, 16(3), 151–158. https://doi.org/10.3991/IJIM.V16I03.28977
Gilbert, J. K., & Treagust, D. F. (2009). Introduction: Macro, Submicro and Symbolic Representations and the Relationship Between Them: Key Models in Chemical Education. 1–8. https://doi.org/10.1007/978-1-4020-8872-8_1
Harianto, A., Suryati, S., & Khery, Y. (2019). Pengembangan Media Pembelajaran Kimia Berbasis Android Untuk Penumbuhan Literasi Sains Siswa Pada Materi Reaksi Redoks Dan Elektrokimia. Hydrogen: Jurnal Kependidikan Kimia, 5(2), 35. https://doi.org/10.33394/hjkk.v5i2.1588
Hatimah, H., & Khery, Y. (2021). Pemahaman Konsep dan Literasi Sains dalam Penerapan Media Pembelajaran Kimia Berbasis Android. Jurnal Ilmiah IKIP Mataram, 8(1), 111–120. Retrieved from https://ojs.ikipmataram.ac.id/index.php/jiim
Helsy, I., Maryamah, Farida, I., & Ramdhani, M. A. (2017). Volta-Based Cells Materials Chemical Multiple Representation to Improve Ability of Student Representation. Journal of Physics: Conference Series, 895(1). https://doi.org/10.1088/1742-6596/895/1/012010
Husna, T., & Zainul, R. (2019). The Effect of Acid Bases Learning Media Using Android-Based Chemical Triangle Applications on Learning Outcomes of Class XI High School Students 3 in Padang City. 15(1), 53–57. http://dx.doi.org/10.52155/ijpsat.v1
Jatmiko, B. B., Sugiyarto, K. H., & Ikhsan, J. (2018). Developing ChemonDro Application on Redox Concepts to Improve Self-Regulated Learning of Students. Journal of Physics: Conference Series, 1097(1). https://doi.org/10.1088/1742-6596/1097/1/012055
Johnstone, A. H. (2006). Chemical education research in Glasgow in perspective. Chemistry Education Research and Practice, 7(2), 49–63. https://doi.org/10.1039/B5RP90021B
Khoiorni, R., Priatmoko, S., & Prasetya, A. T. (2023). The Effectiveness of Android-Based Media in Chemistry Learning to Improve Chemistry Literacy and Learning Motivation. International Journal of Active Learning, 8(1), 10–20. Retrieved from http://journal.unnes.ac.id/nju/index.php/ijal
Khoironi, A. A., Purwanto, K. K., & Priyasmika, R. (2022). The Effectiveness of Android-Based Media in Chemistry Learning to Improve Chemistry Literacy and Learning Motivation. International Journal of Active Learning, 8(1), 10-20.
Kozma, R. (2003). The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and Instruction, 13(2), 205–226. https://doi.org/10.1016/s0959-4752(02)00021-x
Lawhon, D. (1976). Instructional development for training teachers of exceptional children: A sourcebook. Journal of School Psychology, 14(1), 75. https://doi.org/10.1016/0022-4405(76)90066-2
Li, W. S. S., & Arshad, M. Y. (2014). Application of multiple representation levels in redox reactions among tenth grade chemistry teachers. Journal of Turkish Science Education, 11(3), 35–52. https://doi.org/10.12973/tused.10117a
Lubis, I. R., & Ikhsan, J. (2015). Pengembangan Media Pembelajaran Kimia Berbasis Android Untuk Meningkatkan Motivasi Belajar Dan Prestasi Kognitif Peserta Didik Sma. Jurnal Inovasi Pendidikan IPA, 1(2), 191. https://doi.org/10.21831/jipi.v1i2.7504
Lubis, I. R., Solihah, M., Sugiyarto, K. H., & Ikhsan, J. (2015). Pengembangan Media Mobile Learning “ Chemondro ” Berbasis Android Sebagai Suplemen Belajar Siswa SMA. Seminar Nasional Pendidikan Sains Universitas Negeri Yogyakarta, (November), 468–477.
Machmud, K. (2018). The Smartphone Use in Indonesian Schools: The High School Students’ Perspectives. Journal of Arts and Humanities, 7(3), 33. https://doi.org/10.18533/journal.v7i3.1354
Mashami, R. A., & Gunawan, G. (2018). The Influence of Sub-Microscopic Media Animation on Students’ Critical Thinking Skills Based on Gender. Journal of Physics: Conference Series, 1108(1). https://doi.org/10.1088/1742-6596/1108/1/012106
Milama, B., Adiliyah, S., & Fairusi, D. (2023). Development of E-Booklet Based on Problem Based Learning on Acid Base Material for Problem Solving Ability. Edusains, 15(1), 86–98. https://doi.org/10.15408/es.v15i1.32239
Nazar, M., Rusman, Puspita, K., & Yaqin, H. (2022). Android-Based Mobile Learning Resource for Chemistry Students in Comprehending the Concept of Redox Reactions. International Journal of Interactive Mobile Technologies, 16(3), 123–135. https://doi.org/10.3991/IJIM.V16I03.24133
Papilaya, J. O., & Huliselan, N. (2016). Identifikasi Gaya Belajar Mahasiswa. Jurnal Psikologi Undip, 15(1), 56-63. https://doi.org/10.14710/jpu.15.1.56-63
Prasetyo, Y. D., Yektyastuti, R., Solihah, M., Ikhsan, J., & Sugiyarto, K. H. (2015). Pengaruh Penggunaan Media Pembelajaran Kimia Berbasis Android Terhadap Peningkatan Motivasi Belajar Siswa SMA. Seminar Nasional Pendidikan Sains, (November), 252–258.
Putra, P. S., Asi, N. B., Anggraeni, M. E., & Karelius. (2020). Development of android-based chemistry learning media for experimenting. Journal of Physics: Conference Series, 1422(1). https://doi.org/10.1088/1742-6596/1422/1/012037
Ramdani, A., Jufri, A. W., & Jamaluddin, J. (2020). Pengembangan Media Pembelajaran Berbasis Android pada Masa Pandemi Covid-19 untuk Meningkatkan Literasi Sains Peserta Didik. Jurnal Kependidikan: Jurnal Hasil Penelitian Dan Kajian Kepustakaan Di Bidang Pendidikan, Pengajaran Dan Pembelajaran, 6(3), 433-440. https://doi.org/10.33394/jk.v6i3.2924
Retnawati, H. (2016). Analisis Kuantitatif Instrumen Penelitian. Yogyakarta: Sarana Publishing.
Scanlan, A. M., Kennedy, D., & McCarthy, T. V. (2021). Development and Evaluation of Online Approaches for Improved Kinaesthetic Learning in Science. International Conference on Higher Education Advances, 153–161. https://doi.org/10.4995/HEAd21.2021.13146
Şendur, G., Toprak, M., & Pekmez, E. S. (2010). Analyzing of students’ misconceptions about chemical equilibrium. International Conference on New Trends in Education and Their Implications, 1–7. Retrieved from http://www.iconte.org/FileUpload/ks59689/File/2.pdf
Solihah, A., Yektyastusi, R., Prasetyo, Y. D., Sugiyarto, K. H., & Ikhsan, J. (2015). Pengembangan Media Pembelajaran Kimia Berbasis Android Sebagai Suplemen Materi Asam Basa Berdasarkan Kurikulum 2013. Prosiding Seminar Nasional Pendidikan Sains, ISSN: 2407, (November), 2015–2457.
Syarifuddin, Alian, Safitri, S., Abidin, N. F., Sinta, Oktaviani, R. R., & Zarro, M. (2023). Developing Mobile Learning Activity Based on Multiple Learning Objects for the South Sumatra Local Wisdom Course. Asian Journal of University Education, 19(1), 12–27. https://doi.org/10.24191/ajue.v19i1.21225
Talanquer, V. (2011). Macro, submicro, and symbolic: The many faces of the chemistry “triplet.” International Journal of Science Education, 33(2), 179–195. https://doi.org/10.1080/09500690903386435
Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25(11), 1353–1368. https://doi.org/10.1080/0950069032000070306
Wahdatillah, B., Noer, A. M., & Anwar, S. L. (2022). Pengembangan E-Lkpd Berbasis Pbl-Mr Menggunakan Aplikasi Flip Builder Pada Materi Bentuk Molekul Dan Interaksi Antar Molekul. Edusains, 14(1), 72–83. https://doi.org/10.15408/es.v14i1.25658
Widoyoko, E. P. (2009). Evaluasi Program Pembelajaran: Panduan praktis Bagi Pendidik dan Calon Pendidik. Yogyakarta: Pustaka Belajar.