Implementation of Bidirectional Long Short-Term Memory and Convolutional Neural Network in Detecting Hoax Content on Social Media
Abstract
The advancement of internet technology has facilitated the spread of information, including false information or fake news. The dissemination of hoaxes on social media, such as Twitter, can cause confusion and negatively impact society. This study aims to implement a hybrid model that combines Bidirectional Long Short-Term Memory (Bi-LSTM) and Convolutional Neural Network (CNN) for hoax detection. The dataset used consists of English tweets containing both real and fake news, collected between 2020 and 2022, as provided by the TruthSeeker dataset. The model utilizes an embedding layer with word2vec, a Conv1D layer, and a BiLSTM layer to effectively capture temporal and spatial patterns in text data. Additionally, experiments were conducted by varying the number of BiLSTM units and CNN filters to analyze their impact on model performance. After conducting parameter experiments, the best results were achieved using a Conv1D layer with 64 filters and a BiLSTM layer with 64 neurons/units. The evaluation results on the test data indicate an accuracy of 96.14%, a precision of 96%, a recall of 96.25%, and an F1-score of 96%. These results demonstrate the model's high capability in accurately detecting hoaxes, which is significant for combating misinformation on social media. With its strong performance, the model has potential applications in real-time content moderation systems, early hoax detection tools, and digital literacy platforms to help reduce the spread of false information.
Keywords
Full Text:
PDFReferences
A. U. Hussna, M. G. R. Alam, R. Islam, B. F. Alkhamees, M. M. Hassan, and M. Z. Uddin, “Dissecting the infodemic: An in-depth analysis of COVID-19 misinformation detection on X (formerly twitter) utilizing machine learning and deep learning techniques,” Heliyon, vol. 10, no. 18, Art. no. e37760, Sep. 2024, doi: 10.1016/j.heliyon.2024.e37760.
L. Samaras, E. García-Barriocanal, and M.-A. Sicilia, “Sentiment analysis of COVID-19 cases in greece using twitter data,” Expert Systems with Applications, vol. 230, Art. no. 120577, Jun. 2023, doi: 10.1016/j.eswa.2023.120577.
H. B. Aji and E. B. Setiawan, “Mendeteksi Konten hoax di media sosial menggunakan Bi-LSTM dan RNN,” Building of Informatics, Technology and Science (BITS), vol. 5, no. 1, pp. 114–125, 2023.
T. C. Praha, Widodo and M. Nugraheni, “Indonesian fake news classification using transfer learning in CNN and LSTM,” JOIV: International Journal on Informatics Visualization, vol. 8, no. 3, pp. 1213–1221, 2024, doi: 10.62527/joiv.8.3.2126.
E. Gabarron, S. O. Oyeyemi and R. Wynn, “COVID-19-related misinformation on social media: A systematic review,” Bulletin of the World Health Organization, vol. 99, no. 6, pp. 455–463A, 2021.
B. P. Nayoga, R. Adipradana, R. Suryadi and D. Suhartono, “Hoax Analyzer for Indonesian News Using Deep Learning,” Procedia Computer Science, vol. 179, p. 704–712, 2021.
B. Jang, M. Kim, G. Harerimana, S.-u. Kang and J. W. Kim, “Bi-LSTM model to increase accuracy in text classification: Combining word2vec CNN and attention mechanism,” Applied Sciences, vol. 10, no. 17, Art. no. 5841, 2020, doi: 10.3390/app10175841.
H. Bangyal, R. Qasim, N. Rehman, Z. Ahmad, H. Dar, L. Rukhsar, Z. Aman and J. Ahmad, “Detection of fake news text classification on COVID-19 using deep learning approaches,” Computational and Mathematical Methods in Medicine, vol. 2021, pp. 1–14, 2021.
A. R. I. Fauzy and E. B. Setiawan, “Detecting Fake news on social media combined with the CNN methods,” Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), vol. 7, no. 2, pp. 271–277, 2023.
C. Yoviananda and T. M. Fahrudin, “Implementation of deep learning to detect indonesian hoax news with convolutional neural network method,” IJEEIT International Journal of Electrical Engineering and Information Technology, vol. 4, no. 2, pp. 86–93, 2022.
P. N. Anggreyani and W. Maharani, “Hoax detection tweets of the COVID-19 on twitter using LSTMCNN with word2vec,” Jurnal Media Informatika Budidarma, vol. 6, no. 4, pp. 2432–2437, 2022.
R. Rhanoui, M. Mikram, S. Yousfi and S. Barzali, “A CNN-BiLSTM model for document-level sentiment analysis,” Machine Learning and Knowledge Extraction, vol. 1, no. 3, pp. 832–847, 2019.
L. Lestandy and A. Abdurrahim, “Effect of word2vec Weighting with CNN-BiLSTM Model on Emotion Classification,” Jurnal Nasional Pendidikan Teknik Informatika: JANAPATI, vol. 12, no. 1, pp. 99–107, 2023.
W. K. Sari, I. S. B. Azhar, Z. Yamani and Y. Florensia, “Fake news detection using optimized convolutional neural network and bidirectional long short-term memory,” Computer Engineering and Applications Journal, vol. 13, no. 3, pp. 25–33, 2024.
I. Segura-Bedmar and S. Alonso-Bartolome, “Multimodal fake news detection,” Information, vol. 13, no. 6, Art. no. 284, 2022, doi: 10.3390/info13060284.
Y. Kim, “Convolutional neural networks for sentence classification,” Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751, 2014.
P. A. Aritonang, M. E. Johan and I. Prasetiawan, “Aspect-based sentiment analysis on application review using CNN,” Ultima Infosys: Jurnal Ilmu Sistem Informasi, vol. 13, no. 1, pp. 54–61, 2022.
S. Dadkhah, X. Zhang, A. G. Weismann, A. Firouzi, and A. A. Ghorbani, “The largest social media Ground-Truth dataset for Real/Fake content: TruthSeeker,” IEEE Transactions on Computational Social Systems, vol. 11, no. 3, pp. 3376–3390, Oct. 2023, doi: 10.1109/tcss.2023.3322303.
W. Pamungkas and S. Suryani, “Deteksi hoax untuk berita hoax covid 19 Indonesia Menggunakan CNN,” B. S. thesis, Universitas Telkom, 2021. [Online]. Available: https://repositori.telkomuniversity.ac.id/pustaka/172363/deteksi-hoax-untuk-berita-hoax-covid-19-indonesia-menggunakan-cnn.html
A. Nurkholis, S. Styawati, S. Alim, H. Saputra and A. Ferriyan, “Sentiment analysis of COVID-19 booster vaccines on twitter using multi-class support vector machine,” Applied Information System and Management (AISM), vol. 8, no. 1, pp. 29–36, 2025, doi: 10.15408/aism.v8i1.42911.
H. P. Fitrian, I. Ruslianto and R. Hidayati, “Implementasi metode naive bayes classifier untuk aplikasi filtering email spam dengan lemmatization berbasis web, coding jurnal komputer dan aplikasi,” Coding: Jurnal Komputer dan Aplikasi, vol. 6, no. 2, pp. 13–24, 2018, doi: 10.26418/coding.v6i2.25487.
D. Jurafsky and C. Manning, Natural Language Processing, Standford, 2012.
D. I. Af'idah, Dairoh, S. F. Handayani and R. W. Pratiwi, “Pengaruh parameter word2vec terhadap performa deep learning pada klasifikasi sentimen,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 6, no. 3, pp. 156–161, 2021.
T. Mikolov, K. Chen, G. S. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” ArXiv (Cornell University), Jan. 2013, doi: 10.48550/arxiv.1301.3781.
A. K. Tyagi and V. K. Reddy, “Performance analysis of under-sampling and over-sampling techniques for solving class imbalance problem,” International Conference on Sustainable Computing in Science, Technology & Management (SUSCOM-2019), pp. 1305–1315, 2019. ArXiv preprint, vol. 3781, 2013.
D. Gupta, “Detection of fake news on twitter using machine learning: An xgboost-based,” International Journal of Advanced Research, vol. 12, no. 08, pp. 948–964, 2024.
C. Rahmad, N. Nurfaidah, S. Adhisuwignjo and M. Hani’ah, “Mask detection app uses haar cascade and convolutional neural network to alert comply with health protocols,” Applied Information System and Management (AISM), vol. 6, no. 2, pp. 77–82, 2023, doi: 10.15408/aism.v6i2.31396.
M. B. Tamam, H. Hozairi, M. Walid and J. F. A. Bernardo, “Classification of sign language in real time using convolutional neural network,” Applied Information System and Management (AISM), vol. 6, no. 1, pp. 39–46, 2023, doi:10.15408/aism.v6i1.29820.
DOI: https://doi.org/10.15408/aism.v8i1.45222
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
EDITORIAL ADDRESS:
Department of Information Systems, Faculty of Science and Technology,
Universitas Islam Negeri (UIN) Syarif Hidayatullah Jakarta
Faculty of Science and Technology Building, 3rd Floor, 1st Campus, Universitas Islam Negeri (UIN) Syarif Hidayatullah Jakarta
Jl. Ir. H. Juanda No. 95, Ciputat Timur, Kota Tangerang Selatan, Banten 15412, Indonesia.
Tlp/Fax: +622174019 25/+62217493315.
E-mail: aism.journal@apps.uinjkt.ac.id, Website: https://journal.uinjkt.ac.id/index.php/aism
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Applied Information System and Management (AISM) | E-ISSN: 2621-254 | P-ISSN: 2621-2536
https://journal.uinjkt.ac.id/index.php/aism