Indonesian Black Tea (Camellia sinensis) as a Potential Acetylcholinesterase Inhibitor Against Alzheimer’s Disease: Docking, DFT, and In Vitro Evidence

Authors

  • Mega Safithri Division of Bioanalysis, Department of Biochemistry, Faculty of Mathematics and Natural Science, Institut Pertanian Bogor
  • Rini Kurniasih Division of Biomolecule, Department Biochemistry, Faculty of Mathematics and Natural Science, Institut Pertanian Bogor
  • Dimas Andrianto Division of Bioanalysis, Department Biochemistry, Faculty of Mathematics and Natural Science, Institut Pertanian Bogor
  • Ukhradiya Magharaniq Safira Purwanto Division of Bioanalysis, Department Biochemistry, Faculty of Mathematics and Natural Science, Institut Pertanian Bogor
  • Muhammad Marsha Azzami Hasibuan Department Biochemistry, Faculty of Mathematics and Natural Science, Institut Pertanian Bogor
  • Rini Madyastuti Purwono Sub-Division of Pharmacy, School of Veterinary Medicine and Biomedical Sciences, IPB University
  • Maheswari Alfira Dwicesaria Department Biochemistry, Faculty of Mathematics and Natural Science, Institut Pertanian Bogor
  • John G. Acton School of Biological Sciences, The Flinders University of South Australia

DOI:

https://doi.org/10.15408/jkv.v11i2.47300

Keywords:

Acetylcholinesterase inhibitors, Alzheimer’s disease, Camellia sinensis, Density Functional Theory, in vitro

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder predominantly affecting the elderly and characterized by dementia. AD pathology involves impaired cholinergic neurotransmission, largely due to β-amyloid (Aβ) plaque accumulation, which inhibits choline acetyltransferase (ChAT) and reduces acetylcholine (ACh) levels. Acetylcholinesterase (AChE) contributes to AD progression by hydrolyzing ACh and promoting Aβ plaque formation, making it a key therapeutic target. This study investigated natural compounds from black tea (Camellia sinensis) as potential AChE inhibitors. Molecular docking analyses assessed interactions between bioactive compounds from aqueous black tea extracts and AChE, followed by evaluation of bioavailability, biological activity, toxicity, stability, and reactivity.  Epigallocatechin gallate exhibited the strongest binding affinity (∆Gbind = –12.2740 kcal/mol), forming extensive interactions with the catalytic active site located at the bottom of a deep and narrow gorge (~20 Å). Density Functional Theory (DFT) analysis confirmed its high stability and favorable reactivity in complex with AChE. In vitro validation using black tea extracts from Bogor, Indonesia, showed significant AChE inhibition with an IC50 value of 44.85 ± 1.48 µg/mL. These findings highlight the promising potential of Indonesian black tea as a natural alternative for Alzheimer’s disease therapy.

Downloads

Download data is not yet available.

References

1. Thawabteh AM, Ghanem AW, AbuMadi S, Thaher D, Jaghama W, Karaman D, Karaman R. Promising Natural Remedies for Alzheimer’s Disease Therapy. Molecules.Multidisciplinary Digital Publishing Institute (MDPI). 2025;30(4). doi:10.3390/molecules30040922

2. Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, Villemagne VL, Aisen P, Vendruscolo M, Iwatsubo T, Masters CL, Cho M, Lannfelt, L, Cummings JL, Vergallo A. The Amyloid-β Pathway in Alzheimer’s Disease. Mol Psychiatry. 2021;26(10):5481-5503. doi:10.1038/s41380-021-01249-0

3. Pagano K, Tomaselli S, Molinari H, Ragona L. Natural Compounds as Inhibitors of Aβ Peptide Aggregation: Chemical Requirements and Molecular Mechanisms. Front Neurosci.Frontiers Media S.A. 2020;14. doi:10.3389/fnins.2020.619667

4. Nogara PA, Saraiva R de A, Caeran Bueno D, Dalla Corte CL. Virtual Screening of Acetylcholinesterase Inhibitors Using the Lipinski’s Rule of Five and ZINC Databank. Biomed Res Int. 2015;2015:1-8. doi:10.1155/2015/870389

5. Kocahan S, Doğan Z. Mechanisms of Alzheimer’s Disease Pathogenesis and Prevention: The Brain, Neural Pathology, N-methyl-D-aspartate Receptors, Tau Protein and Other Risk Factors. Clinical Psychopharmacology and Neuroscience. 2017;15(1):1-8. doi:10.9758/cpn.2017.15.1.1

6. Stanciu GD, Luca A, Rusu RN, Bild V, Beschea Chiriac SL, Solcan C, Bild W, Carmen Ababei D. Alzheimer’s Disease Pharmacotherapy in Relation to Cholinergic System Involvement. Biomolecules. 2019;10(1):40. doi:10.3390/biom10010040

7. Darvesh S. Butyrylcholinesterase as a Diagnostic and Therapeutic Target for Alzheimer’s Disease. Curr Alzheimer Res. 2016;13(10):1173-1177. doi:10.2174/1567205013666160404120542

8. Moreira NC dos S, Lima JEB de F, Marchiori MF, Carvalho I, Sakamoto-Hojo ET. Neuroprotective Effects of Cholinesterase Inhibitors: Current Scenario in Therapies for Alzheimer’s Disease and Future Perspectives. J Alzheimers Dis Rep. 2022;6(1):177-193. doi:10.3233/ADR-210061

9. Alzheimer’s Disease International. World Alzheimer Report 2023 Reducing Dementia Risk: Never Too Early, Never Too Late.; 2023. Accessed November 26, 2024. https://www.alzint.org/u/World-Alzheimer-Report-2023.pdf

10. KEMENKES [Kementerian Kesehatan Indonesia]. Demensia.

11. Alzheimer’s Association Report. 2025 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia. 2025;21(4). doi:10.1002/alz.70235

12. Soto C, Kindy MS, Baumann M, Frangione B. Inhibition of Alzheimer’s Amyloidosis by Peptides That Prevent Beta-Sheet Conformation. Vol 226.; 1996.

13. Rezai-Zadeh K, Arendash GW, Hou H, Frank F, Jensen M, Runfeldt M, Shytle RD, Tan J. Green tea epigallocatechin gallate (EGCG) reduces β-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res. 2008;1214:177-187. doi:10.1016/j.brainres.2008.02.107

14. Dhouafli Z, Cuanalo-Contreras K, Hayouni EA, Mays CE, Soto C, Moreno-Gonzalez I. Inhibition of protein misfolding and aggregation by natural phenolic compounds. Cellular and Molecular Life Sciences.Birkhauser Verlag AG. 2018;75(19):3521-3538. doi:10.1007/s00018-018-2872-2

15. Ma L, Yang C, Zheng J, Chen Y, Xiao Y, Huang K. Non-polyphenolic natural inhibitors of amyloid aggregation. Eur J Med Chem.Elsevier Masson SAS. 2020;192. doi:10.1016/j.ejmech.2020.112197

16. Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer’s disease: mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther. 2024;9(1):211. doi:10.1038/s41392-024-01911-3

17. Lou YH, Wang JS, Dong G, Guo PP, Wei DD, Xie SS, Yang MH. The acute hepatotoxicity of tacrine explained by 1 H NMR based metabolomic profiling. Toxicol Res (Camb). 2015;4(6):1465-1478. doi:10.1039/C5TX00096C

18. Baranowska‐wójcik E, Szwajgier D, Winiarska‐mieczan A. Regardless of the brewing conditions, various types of tea are a source of acetylcholinesterase inhibitors. Nutrients. 2020;12(3). doi:10.3390/nu12030709

19. Piyasena KGNP, Ranatunga MAB, Napagoda MT, Amarasinghe NR, Abayarathne AAB, Jayasinghe L. Evaluation of antioxidant, acetylcholinesterase, lipase, α-amylase, xanthine oxidase, and α-glucosidase enzyme inhibitory activities of Sri Lankan tea cultivars. Discover Plants. 2025;2(1). doi:10.1007/s44372-025-00122-6

20. Dong X, Yang C, Cao S, Gan Y, Sun H, Gong, Y, Yang H, Yin X, Lu Z. Tea consumption and the risk of depression: A meta-analysis of observational studies. Australian and New Zealand Journal of Psychiatry. 2015;49(4):334-345. doi:10.1177/0004867414567759

21. Anandhan A, Tamilselvam K, Radhiga T, Rao S, Essa MM, Manivasagam T. Theaflavin, a black tea polyphenol, protects nigral dopaminergic neurons against chronic MPTP/probenecid induced Parkinson’s disease. Brain Res. 2012;1433:104-113. doi:10.1016/j.brainres.2011.11.021

22. Deb S, Dutta A, Phukan BC, Manivasagam T, Thenmozhi AJ, Bhattacharya P, Paul R, Borah A. Neuroprotective attributes of L-theanine, a bioactive amino acid of tea, and its potential role in Parkinson’s disease therapeutics. Neurochem Int.Elsevier Ltd. 2019;129. doi:10.1016/j.neuint.2019.104478

23. Samanta T, Chandran KS, Medda N, Banerjee A, Mitra A, De SK, Maiti S. Black tea and its theaflavin derivatives firmly inhibit acetylcholinesterase activity, possible implications in cholinergic neurodegenerative or muscular disorder. Preprint posted online August 3, 2022. doi:10.21203/rs.3.rs-1902799/v1

24. Ray S, De B, Article R, De B. Acetylcholinesterase Inhibitory Properties of Black Tea and Its Polyphenolic Components.; 2012. https://www.researchgate.net/publication/274706500

25. Hasan AEZ, Safithri M, Huda AS, Kurniasih R. In Silico, To Determine The Active Compounds Of Black Tea And Turmeric In Increasing The Activity Of The Enzyme Sod. Indonesian Journal of Applied Research (IJAR). 2022;3(1):32-45. doi:10.30997/ijar.v3i1.187

26. Safithri M, Faridah N, Ramadani F, Pratama R. Antioxidant activity of ethanol extract and fractions of Piper crocatum with Rancimat and cuprac methods. 2022; https://doi.org/10.1515/tjb-2021-0300.

27. Gerlits O, Ho KY, Cheng X, Blumenthal D, Taylor P, Kovalevsky A, Radic Z. A new crystal form of human acetylcholinesterase for exploratory room-temperature crystallography studies. Chem Biol Interact. 2019;309. doi:10.1016/j.cbi.2019.06.011

28. Neese F, Wennmohs F, Becker U, Riplinger C. The ORCA quantum chemistry program package. J Chem Phys. 2020;152(22). doi:10.1063/5.0004608

29. Huda AS, Hasan AEZ, Safithri M. Acetylcholinesterase Enzyme Inhibitor and Antioxidant Activities from A Mixture Extracts of Black Tea, Red Betel, Cinnamon and Curcuma. Curr. Biochem. 2022. 9(2): 63-72.

30. Seniya C, Khan GJ, Uchadia K. Identification of Potential Herbal Inhibitor of Acetylcholinesterase Associated Alzheimer’s Disorders Using Molecular Docking and Molecular Dynamics Simulation. Biochem Res Int. 2014;2014:1-7. doi:10.1155/2014/705451

31. Dvir H, Silman I, Harel M, Rosenberry TL, Sussman JL. Acetylcholinesterase: From 3D structure to function. Chem Biol Interact. 2010;187(1-3):10-22. doi:10.1016/j.cbi.2010.01.042

32. Cheung J, Rudolph MJ, Burshteyn F, Cassidy MS, Gary EN, Love J, Franklin MC, Height JJ. Structures of Human Acetylcholinesterase in Complex with Pharmacologically Important Ligands. J Med Chem. 2012;55(22):10282-10286. doi:10.1021/jm300871x

33. Lu SH, Wu JW, Liu HL, Zhao JH, Liu KT, Chuang CK, Lin HY, Tsai WB, Ho Y. The discovery of potential acetylcholinesterase inhibitors: A combination of pharmacophore modeling, virtual screening, and molecular docking studies. J Biomed Sci. 2011;18(1):8. doi:10.1186/1423-0127-18-8

34. Saini R, Saxena AK. The Structural Hybrids of Acetylcholinesterase Inhibitors in the Treatment of Alzheimer’s Disease: A Review. Alzheimer’s & Neurodegenerative Diseases. 2018;4(1):1-25. doi:10.24966/AND-9608/100015

35. Dallakyan S, Olson AJ. Small-Molecule Library Screening by Docking with PyRx. In: 2015:243-250. doi:10.1007/978-1-4939-2269-7_19

36. Atanasova M, Yordanov N, Dimitrov I, Berkov S, Doytchinova I. Molecular Docking Study on Galantamine Derivatives as Cholinesterase Inhibitors. Mol Inform. 2015;34(6-7):394-403. doi:10.1002/minf.201400145

37. Doytchinova I, Atanasova M, Valkova I, Valkova I, Starvrakov G, Philipova I, Zhivkova Z, Zheleva-Dimitrova D, Konstantinov S, Dimitrov I. Novel hits for acetylcholinesterase inhibition derived by docking-based screening on ZINC database. J Enzyme Inhib Med Chem. 2018;33(1):768-776. doi:10.1080/14756366.2018.1458031

38. Wang W, Le T, Wang W, Yu L, Yang L, Jiang H. Effects of Key Components on the Antioxidant Activity of Black Tea. Foods. 2023;12(16):3134. doi:10.3390/foods12163134

39. Luo Q, Luo L, Zhao J, Wang Y, Luo H. Biological potential and mechanisms of Tea’s bioactive compounds: An Updated review. J Adv Res.Elsevier B.V. 2024;65:345-363. doi:10.1016/j.jare.2023.12.004

40. Tandale AT, Nayak BB, Xavier KAM, Devangre AA, Gore SB, Balange AK. Phenolic Compounds and Bioactive Properties of Black Tea Powder. Indian J Anim Res. 2024;58(2):342-346. doi:10.18805/IJAR.B-4849

41. Salimikia I, Aminnezhad S, Maghsoudloo M, Mirzania F. Micro Nano Bio Aspects Anti-neurodegenerative, anticancer, anti-inflammatory, and antiobesity activities of theaflavin and its derivatives. Micro Nano Bio Aspects. 2023;2023(4):8-16. doi:10.22034/mnba.2023.413015.1044

42 Lee MK, Kim HW, Lee SH, Kim YJ, Asamenew G, Choi J, Lee JW, Jung HA, Yoo SM, Kim JB. Characterization of catechins, theaflavins, and flavonols by leaf processing step in green and black teas (Camellia sinensis) using UPLC-DAD-QToF/MS. European Food Research and Technology. 2019;245(5):997-1010. doi:10.1007/s00217-018-3201-6

43. Sato J, Tomita A, Sonoda T, Miyamoto T. Theaflavin and its derivatives exert antibacterial action against Bacillus coagulans through adsorption to cell surface phospholipids. J Appl Microbiol. 2022;133(3):1781-1790. doi:10.1111/jam.15690

44. Gargi S, Nilanjan S, Moutusi N, Subhasis M. Bioactive components of tea. Archive of Food and Nutritional Science. 2020;4(1):001-009. doi:10.29328/journal.afns.1001020

45. Li R, Huang YG, Fang D, Le WD. (-)-Epigallocatechin gallate inhibits lipopolysaccharide-induced microglial activation and protects against inflammation-mediated dopaminergic neuronal injury. J Neurosci Res. 2004;78(5):723-731. doi:10.1002/jnr.20315

46. Sharma N, Phan HT, Chikae M, Takamura Y, Azo‐Oussou AF, Vestergaard MC. Black tea polyphenol theaflavin as promising antioxidant and potential copper chelator. J Sci Food Agric. 2020;100(7):3126-3135. doi:10.1002/jsfa.10347

47. Kim CY, Lee C, Park GH, Jang JH. Neuroprotective effect of epigallocatechin gallate against β-amyloid-induced oxidative and nitrosative cell death via augmentation of antioxidant defense capacity. Arch Pharm Res. 2009;32(6):869-881. doi:10.1007/s12272-009-1609-z

48. Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, Engemann S, Pastore A, Wanker EE. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol. 2008;15(6):558-566. doi:10.1038/nsmb.1437

49. Herges K, Millward JM, Hentschel N, Infante-Duarte C, Aktas O, Zipp F. Neuroprotective effect of combination therapy of Glatiramer acetate and epigallocatechin gallate in neuroinflammation. PLoS One. 2011;6(10). doi:10.1371/journal.pone.0025456

50. Palhano FL, Lee J, Grimster NP, Kelly JW. Toward the molecular mechanism(s) by which EGCG treatment remodels mature amyloid fibrils. J Am Chem Soc. 2013;135(20):7503-7510. doi:10.1021/ja3115696

51. Ahmad A, Nosheen F, Arshad MU, Saeed F, Afzaal M, Islam F, Imran A, Noreen R, Ali YA, Shah MA. Isolation and antioxidant characterization of theaflavin for neuroprotective effect in mice model. Food Sci Nutr. 2023;11:3485–3496.

52. Pardridge WM. Drug transport across the blood-brain barrier. Journal of Cerebral Blood Flow and Metabolism. 2012;32(11):1959-1972. doi:10.1038/jcbfm.2012.126

53. Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood–brain barrier: structure, regulation, and drug delivery. Signal Transduct Target Ther.Springer Nature. 2023;8(1). doi:10.1038/s41392-023-01481-w

54. Li X, Smid SD, Lin J, Gong Z, Chen S, You F, Zhang Y, Hao Z, Lin H, Yu X. Neuroprotective and anti-amyloid β effect and main chemical profiles of white tea: Comparison against green, oolong and Black tea. Molecules. 2019;24(10). doi:10.3390/molecules24101926

55 Yu J, Su NQ, Yang W. Describing Chemical Reactivity with Frontier Molecular Orbitalets. JACS Au. 2022;2(6):1383-1394. doi:10.1021/jacsau.2c00085

56. Okello E.J, Savelev SU, Perry EK. In vitro Anti-β-secretase and Dual Anti cholinesterase Activities of Camellia sinensis L. (tea) Relevant to Treatment of Dementia. Phytother. Res. 18, 624–627 (2004)

57. Piyasena KGNP, Ranatunga MAB, Napagoda MT, Amarasinghe NR, Abarayathne AAB, Jayasinghe L. Evaluation of antioxidant, acetylcholinesterase, lipase, α amylase, xanthine oxidase, and α glucosidase enzyme inhibitory activities of Sri Lankan tea cultivars. Discover Plants (2025) 2:49

Downloads

Published

23-12-2025

Issue

Section

Jurnal Kimia VALENSI, Volume 11, No. 2, November 2025

How to Cite

Indonesian Black Tea (Camellia sinensis) as a Potential Acetylcholinesterase Inhibitor Against Alzheimer’s Disease: Docking, DFT, and In Vitro Evidence. (2025). Jurnal Kimia Valensi, 11(2), 300-312. https://doi.org/10.15408/jkv.v11i2.47300