Experimental and Molecular Docking Study of 3′,4′,5′-Trimethoxychalcones Targeting Overexpressed Protein in HCT-116 Colon Cancer Cells
DOI:
https://doi.org/10.15408/jkv.v11i2.46483Keywords:
Colon cancer, chalcone, HCT-116, Inhibitors, molecular dockingAbstract
Cancer poses a substantial global health challenge. Colorectal cancer (CRC) is the second leading cause of cancer-related mortality after lung cancer and is associated with high mortality rates worldwide. Chalcones have attracted significant interest because of their diverse biological properties, including potential anticancer effects. In this study, five 3′,4′,5′-trimethoxychalcones (1-5) were tested against HCT-116 colon cancer cells using an MTT assay for the first time. Molecular docking was conducted to predict molecular interactions targeting three proteins (tubulin, EGFR, and CDK2). Among the five, four compounds (1, 3, 4, and 5) exhibited strong inhibitory activity against HCT-116 colon cells, with IC50 values < 10 µM. Compounds 1-5 showed potency as drug candidates based on the Lipinski rules and pharmacokinetic profiles using SwissADME and pkCSM online tools. Moreover, molecular docking was performed on compound 5 against three protein targets (tubulin, EGFR, CDK2) with binding affinities of -7.4, -7.3, and -8.5 kcal/mol, respectively, and showed major H-bond interactions. Therefore, these results suggest that compound 5 could be a potential inhibitor to be developed in future studies, both in vitro and in vivo, to understand its inhibition mechanism and efficacy.
Downloads
References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249. https://doi.org/10.3322/caac.21660
2. An P. diwan Ad, chandra Sr. Flavonoids: an overview. J Nutr Sci. 2016;5:e47. https://doi.org/10.1017/jns.2016.41
3. Chen S, Wang X, Cheng Y, Gao H, Chen X. A review of classification, biosynthesis, biological activities and potential applications of flavonoids. Molecules. 2023;28(13):4982. https://doi.org/10.3390/molecules28134982
4. Syam S, Abdelwahab SI, Al-Mamary MA, Mohan S. Synthesis of chalcones with anticancer activities. Molecules. 2012;17(6):6179-6195. https://doi.org/10.3390/molecules17066179
5. Mittal A, Vashistha VK, Das DK. Recent advances in the antioxidant activity and mechanisms of chalcone derivatives: A computational review. Free Radic Res. 2022;56(5-6):378-397. https://doi.org/10.1080/10715762.2022.2120396
6. Reddy MVB, Hung H-Y, Kuo P-C, Huang GJ, Chan, YY, Huang SC, Wu, SJ, Morris-Natschke SL, Lee KH, Wu TS. Synthesis and biological evaluation of chalcone, dihydrochalcone, and 1, 3-diarylpropane analogs as anti-inflammatory agents. Bioorg Med Chem Lett. 2017;27(7):1547-1550. https://doi.org/10.1016/j.bmcl.2017.02.038
7. Lagu SB, Yejella RP, Bhandare RR, Shaik AB. Design, synthesis, and antibacterial and antifungal activities of novel trifluoromethyl and trifluoromethoxy substituted chalcone derivatives. Pharmaceuticals. 2020;13(11):375. https://doi.org/10.3390/ph13110375
8. Elkhalifa D, Al-Hashimi I, Al Moustafa A-E, Khalil A. A comprehensive review on the antiviral activities of chalcones. J Drug Target. 2021;29(4):403-419. https://doi.org/10.1080/1061186X.2020.1853759
9. Syahri J, Nasution H, Nurohmah BA, Purwono B, Yuanita E, Zakaria NH, Hassan I. Design, synthesis and biological evaluation of aminoalkylated chalcones as antimalarial agent. Sains Malays. 2020;49(11):2667-2677. http://dx.doi.org/10.17576/jsm-2020-4911-06
10. Kobkeatthawin T, Chantrapromma S, Suwunwong T, Rhyman L, Choong YS, Ramasami P. Synthesis, Molecular Docking and Tyrosinase Inhibitory Activity of the Decorated Methoxy Sulfonamide Chalcones: in vitro Inhibitory Effects and the Possible Binding Mode. Sains Malays. 2021;50(9):2603-2614. http://doi.org/10.17576/jsm-2021-5009-09
11. Moreira J, Loureiro JB, Correia D, Palmeira A, Pinto MM, Saraiva L, Cidade H. Structure–Activity Relationship Studies of Chalcones and Diarylpentanoids with Antitumor Activity: Potency and Selectivity Optimization. Pharmaceuticals. 2023;16(10):1354. doi: https://doi.org/10.3390/ph16101354
12. Kim S-H, Lee E, Baek KH, Kwon HB, Woo H, Lee ES, Kwon Y, Na Y. Chalcones, inhibitors for topoisomerase I and cathepsin B and L, as potential anti-cancer agents. Bioorg Med Chem Lett. 2013;23(11):3320-3324. doi: https://doi.org/10.1016/j.bmcl.2013.03.106
13. Ducki S, Rennison D, Woo M, Kendall A, Chabert JFD, McGown AT, Lawrence NJ. Combretastatin-like chalcones as inhibitors of microtubule polymerization. Part 1: Synthesis and biological evaluation of antivascular activity. Bioorg. Med. Chem. 2009;17(22):7698-7710. doi: https://doi.org/10.1016/j.bmc.2009.09.039
14. Boumendjel A, McLeer-Florin A, Champelovier P, et al. A novel chalcone derivative which acts as a microtubule depolymerising agent and an inhibitor of P-gp and BCRP in in-vitro and in-vivo glioblastoma models. BMC cancer. 2009;9:1-11. doi: https://doi.org/10.1186/1471-2407-9-242
15. Danova A, Nguyen DV, Toyoda R, Mahalapbutr P, Rungrotmongkol R, Wonganan P, Chavasiri W. 3′, 4′, 5′-trimethoxy-and 3, 4-dimethoxychalcones targeting A549 cells: Synthesis, cytotoxic activity, and molecular docking. J Mol Struct. 2023;1275:134572. doi: https://doi.org/10.1016/j.molstruc.2022.134572
16. Letulle C, Toublet F-X, Pinon A, Hba S, Lauret A, Sol V, Fagnere C, Rioux B, Allais F, Michallet S, Lafanechere L, Limami Y, Oudghiri M, Othman M, Daich A, Liagre B, Lawson AM, Pouget C. Synthesis and antiproliferative effect of 3, 4, 5-trimethoxylated chalcones on colorectal and prostatic cancer cells. Pharmaceuticals. 2024;17(9):1207. doi: https://doi.org/10.3390/ph17091207
17. Moreira J, Silva PM, Barros M, Saraiva L, Pinto M, Bousbaa H, Cidade H. Discovery of a New Chalcone-Trimethoxycinnamide Hybrid with Antimitotic Effect: Design, Synthesis, and Structure—Activity Relationship Studies. Pharmaceuticals. 2023;16(6):879. doi: https://doi.org/10.3390/ph16060879
18. Liu X, Jin J, Wu Y, Du B, Zhang L, Lu D, Liu Y, Chen X, Lin J, Chen H, Zhang W, Zhuang C, Luan X. Fluoroindole chalcone analogues targeting the colchicine binding site of tubulin for colorectal oncotherapy. Eur J Med Chem. 2023;257:115540. doi: https://doi.org/10.1016/j.ejmech.2023.115540
19. Wang S, Ge Q, Cong H, Zhang W, Liu HL, Qu Z, Chen H, Zhuang C. Structure–Activity Relationship Study of (E)-3-(6-Fluoro-1 H-indol-3-Yl)-2-methyl-1-(3, 4, 5-trimethoxyphenyl) prop-2-en-1-one (FC116) Against Metastatic Colorectal Cancers Resistant to Oxaliplatin. ACS Pharmacol Transl Sci. 2024;7(5):1386-1394. doi: https://doi.org/10.1021/acsptsci.4c00024
20. Nivedya T, Roy N, Paira P, Chakrabarty R. Excavating medicinal virtues of chalcones to illuminate a new scope in cancer chemotherapy. RSC Adv. 2025;15(15):11617-11638. doi: https://doi.org/10.1039/D5RA01280E
21. Romagnoli R, Baraldi PG, Carrion MD, Cara CL, Cruz-Lopez O, Preti D, Tolomeo M, Grimaudo S, Cristina AD, Zonta N, Balzarini J, Brancale A, Sarkar T, Hamel E. Design, synthesis, and biological evaluation of thiophene analogues of chalcones. Bioorg Med Chem. 2008;16(10):5367-5376. doi: https://doi.org/10.1016/j.bmc.2008.04.026
22. Rao YK, Fang S-H, Tzeng Y-M. Synthesis and biological evaluation of 3′, 4′, 5′-trimethoxychalcone analogues as inhibitors of nitric oxide production and tumor cell proliferation. Bioorg Med Chem. 2009;17(23):7909-7914. doi: https://doi.org/10.1016/j.bmc.2009.10.022
23. Srinivasan B, Johnson TE, Lad R, Xing C. Structure− activity relationship studies of chalcone leading to 3-hydroxy-4, 3′, 4′, 5′-tetramethoxychalcone and its analogues as potent nuclear factor κB inhibitors and their anticancer activities. J. Med. Chem. 2009;52(22):7228-7235. doi: https://doi.org/10.1021/jm901278z
24. Semaan J, Pinon A, Rioux B, Hassan L, Limami Y, Pouget C, Fagnere C, Sol V, Diab-Assaf M, Simon A, Liagre B. Resistance to 3‐HTMC‐induced apoptosis through activation of PI3K/Akt, MEK/ERK, and p38/COX‐2/PGE2 pathways in human HT‐29 and HCT116 colorectal cancer cells. J. Cell. Biochem. 2016;117(12):2875-2885. doi: https://doi.org/10.1002/jcb.25600
25. Rioux B, Pouget C, Fidanzi-Dugas C, Gamond A, Laurent A, Semaan J, Pinon A, Champavier Y, Leger DY, Liagre B, Duroux JL, Fagnere C, Sol V. Design and multi-step synthesis of chalcone-polyamine conjugates as potent antiproliferative agents. Bioorg Med Chem Lett. 2017;27(18):4354-4357. doi: https://doi.org/10.1016/j.bmcl.2017.08.024
26. Rioux B, Pinon A, Gamond A, Martin F, Laurent A, Champavier Y, Barette C, Liagre B, Fagnere C, Sol V, Pouget C. Synthesis and biological evaluation of chalcone-polyamine conjugates as novel vectorized agents in colorectal and prostate cancer chemotherapy. Eur J Med Chem. 2021;222:113586. doi: https://doi.org/10.1016/j.ejmech.2021.113586
27. Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004/04/01 2004;4(4):253-265. doi:10.1038/nrc1317
28. Ladanyi M, Pao W. Lung adenocarcinoma: guiding EGFR-targeted therapy and beyond. Mod Pathol. 2008/05/01 2008;21(2):S16-S22. doi:10.1038/modpathol.3801018
29. Xing F, Wang Z, Bahadar N, Wang C, Wang X-D. Molecular insights into kaempferol derivatives as potential inhibitors for CDK2 in colon cancer: pharmacophore modeling, docking, and dynamic analysis. Original Research. Front Chem. 2024-August-21 2024;Volume 12 - 2024doi:10.3389/fchem.2024.1440196
30. Fareed MR, Shoman ME, Hamed MIA, Badr M, Bogari HA, Elhady SS, Ibrahim TS, Abuo-Rahma GEDA, Ali TFS. New Multi-Targeted Antiproliferative Agents: Design and Synthesis of IC261-Based Oxindoles as Potential Tubulin, CK1 and EGFR Inhibitors. Pharmaceuticals. 2021;14(11). doi:10.3390/ph14111114
31. Hawash M, Kahraman DC, Olgac A, Ergun SG, Hamel E, Cetin-Atalay R, Baytas SN. Design and synthesis of novel substituted indole-acrylamide derivatives and evaluation of their anti-cancer activity as potential tubulin-targeting agents. J Mol Struct. 2022/04/15/ 2022;1254:132345. doi:https://doi.org/10.1016/j.molstruc.2022.132345
32. Chanvijit S, Phuagkhaopong S, Mahalapbutr P, Klaewkla M, Chavasiri W, Wonganan P. Allyl ether of mansonone G as a potential anticancer agent for colorectal cancer. Sci Rep. 2022;12(1):19668.
33. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017/03/03 2017;7(1):42717. doi:10.1038/srep42717
34. Pires DEV, Blundell TL, Ascher DB. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J Med Chem. 2015/05/14 2015;58(9):4066-4072. doi:10.1021/acs.jmedchem.5b00104
35. Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Chem Biol: Methods Protoc. Springer; 2014:243-250. doi: https://doi.org/10.1007/978-1-4939-2269-7_19
36. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-461. doi: https://doi.org/10.1002/jcc.21334
37. Khatimah H, Hermawati E, Mulya F, Abdjan MI, Kuamit T, Danova A. A New Ursane-Type Pentacyclic Triterpenoid from the Tree Bark of Sandoricum koetjape: Antibacterial, DFT, and Molecular Docking Study. Int J Mol Sci. 2025;26(21). doi:10.3390/ijms262110389
38. Poolsri W, Noitem R, Jutabha P, Raveesunthornkiat M, Danova A, Chavasiri, W, Muanprasat C. Discovery of a chalcone derivative as an anti-fibrotic agent targeting transforming growth factor-β1 signaling: Potential therapy of renal fibrosis. Biomed Pharmacother. 2023;165:115098. doi: https://doi.org/10.1016/j.biopha.2023.115098
39. Ikwu FA, Isyaku Y, Obadawo BS, Lawal HA, Ajibowu SA. In silico design and molecular docking study of CDK2 inhibitors with potent cytotoxic activity against HCT116 colorectal cancer cell line. J Genet Eng & Biotechnol. 2020;18(1):51. doi: https://doi.org/10.1186/s43141-020-00066-2
40. Negi AS, Gautam Y, Alam S, Chanda D, Lugman S, Sarkar J, Khan F, Konwar R. Natural antitubulin agents: Importance of 3, 4, 5-trimethoxyphenyl fragment. Bioorg Med Chem. 2015;23(3):373-389. doi: https://doi.org/10.1016/j.bmc.2014.12.027
41. Novais P, Silva PM, Moreira J, Palmeira A, Amorim I, Pinto M, Cidade H, Bousbaa H. BP-M345, a new diarylpentanoid with promising antimitotic activity. Molecules. 2021;26(23):7139. doi: https://doi.org/10.3390/molecules26237139
42. Amin MM, Abuo-Rahma GE-DA, Shaykoon MSA, Marzouk AA, Abourehab MAS, Saraya R, Badr M, Sayed AM, Beshr EAM. Design, synthesis, cytotoxic activities, and molecular docking of chalcone hybrids bearing 8-hydroxyquinoline moiety with dual tubulin/EGFR kinase inhibition. Bioorg Chem. 2023;134:106444. doi: https://doi.org/10.1016/j.bioorg.2023.106444
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ade Danova, Piyanuch Wonganan, Elvira Hermawati, Fera Kurniadewi, Iqbal Musthapa, Warinthorn Chavasiri

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.