Preparation and Characterization of Pt/TiO2 Nanotube Arrays (TNAs) Cathode by Photoreduction Method for Hydrogen Evolution
DOI:
https://doi.org/10.15408/jkv.v11i2.46475Keywords:
Cathode, photoelectrocatalytic, photoreduction, Pt, TNAsAbstract
TiO2 nanotube arrays were fabricated using a two-step anodization method. TNAs have been modified by the photoreduction technique with Pt as the cathode in the photoelectrocatalytic zone for the reduction reaction of H+ to produce hydrogen. TNAs with Pt were modified using H2PtCl6 as the precursor by immersion of this solution on the TNA substrate. Pt/TNAs were characterized using SEM-EDX, UV-Vis DRS, XRD, Raman Spectroscopy, Photoluminescence (PL), and photoelectrochemical analysis. The results show that the morphology of TNAs in the tube forms 2.1mm in height, and Pt nanoparticles are formed on the mouth wall of the tube with a size of approximately 10nm. EDX analysis shows that the composition of Pt/TNAs is approximately 0.15%, Ti 37.09%, and O 62.76%, indicating that Pt has been decorated on the TNAs photoanode. The band gap of Pt/TNAs was 2.82 eV. The diffractogram shows three groups of diffraction peaks, indicating the presence of anatase TiO2, Ti as a substrate, and Pt, which has been modified in the TNAs. The Raman peaks of TNAs are confirmed to appear at Raman shifts of 144.75, 196.51, 395.94, 517.14, and 638.85 cm-1. PEC cathodes for hydrogen production using Pt-decorated TNAs have been successfully prepared using photoreduction.
Downloads
References
1. Li P, Yan R, Zhang J, Wu M, He Y, Liu T, Wang J. Hybrid hydrogen production system utilizing photovoltaics, photocatalysis, and thermochemistry for effective full-spectrum solar energy harvesting. Energy Convers Manag. 2025;336. doi:https://doi.org/10.1016/j.enconman.2025.119884
2. Ahmed M, Dincer I. A review on photoelectrochemical hydrogen production systems: Challenges and future directions. Int J Hydrogen Energy. 2019;44(5):2474-2507. doi:10.1016/j.ijhydene.2018.12.037
3. Breuning L, Nigbur F, Wienert P, Khatiwada D. Energy Application of an electrolysis system model for techno-economic optimization of hydrogen production in industry-based case studies. Int J Hydrogen Energy. 2025. doi:10.1016/j.ijhydene.2025.03.291
4. Wang X, Wang X, Song Z, Wang Y, Hu J, Zhou L, Zhang L. Ultrasonic assisted electrolysis enables massive production of hydrogen bulk nanobubbles. J Colloid Interface Sci. 2025;695(April):137748. doi:10.1016/j.jcis.2025.137748
5. Dou B, Zhang H, Song Y, Zhao L, Jiang B, He M, Ruan C, Chen H, Xu Y. Hydrogen production from the thermochemical conversion of biomass: Issues and challenges. Sustain Energy Fuels. 2019;3(2):314-342. doi:10.1039/c8se00535d
6. Gao X, Li C, Lv T, Jiao F, Chen F. Electrolytic hydrogen production and energy conversion performance based on non-imaging solar system constructed with congruent concentrating surface. Renew Energy. 2025;248(October 2024):123136. doi:10.1016/j.renene.2025.123136
7. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. Published online 1972. doi:10.1038/238037a0
8. Srimurugan V, Suryakumar C, Jha S, Raj CC, Prasanth R. Synergistic effects of MoS2/TiO2 nanotubes p-n heterojunction photoelectrode for hydrogen evolution. Int J Hydrogen Energy. 2025;103(January):609-623. doi:10.1016/j.ijhydene.2025.01.230
9. Kong D, Qi J, Liu D, Zhang X, Pan L, Zou J. Ni‑Doped BiVO4 with V4+ Species and Oxygen Vacancies for Efficient Photoelectrochemical Water Splitting. Trans Tianjin Univ. 2019;25(4):340-347. doi:10.1007/s12209-019-00202-1
10. Min SK, Cho K, Yoon J, Choi W. Photoelectrochemical Degradation of Organic Compounds Coupled with Molecular Hydrogen Generation Using Electrochromic TiO2 Nanotube Arrays. Environ Sci Technol. 2017;51(11):6590-6598. doi:10.1021/acs.est.7b00774
11. Huo K, Gao B, Fu J, Chu PK. Fabrication, modification, and biomedical applications of anodized TiO2 nanotube arrays. RSC Adv. 2014;4:17300-17324. doi:10.1039/c4ra01458h
12. Yu R, Liu Z, Pourpoint F, Armstrong AR, Grey CP, Bruce PG. Nanoparticulate TiO2 ( B ): An Anode for Lithium-Ion Batteries. Angewandte. 2012;51:2164-2167. doi:10.1002/anie.201108300
13. Deng Y, Zhanfong M, Fengzhang R, Guangxin W. Enhanced photoelectrochemical performance of TiO2 nanorod array films based on TiO2 compact layers synthesized by a two-step method. RSC Adv. 2019;9:21777-21785. doi:10.1039/c9ra03755a
14. Shaodong S, Song P, Cui J, Liang S. Amorphous TiO2 nanostructures: synthesis, fundamental properties and photocatalytic applications. Catal Sci Technol. Published online 2019. doi:10.1039/C9CY01020C
15. Hailiang L, Wang G, Niu J, Wang E, Niu G, Xie C. Preparation of TiO2 nanotube arrays with efficient photocatalytic performance and super-hydrophilic properties utilizing anodized voltage method. Results Phys. 2019;14(July):102499. doi:10.1016/j.rinp.2019.102499
16. Liu J, Yao M, Shen L. The Third Generation Photovoltaic Cells Based on Photonic Crystals. Mater Chem C. Published online 2019. doi:10.1039/C8TC05461D
17. Wu L, Li C, Song Y, Zhang K, Zhang J, Li P, Zhu X. What happens if anodic TiO2 nanotubes are soaked in H3PO4 at room temperature for a long time? Electrochem commun. 2019;105(July):106501. doi:10.1016/j.elecom.2019.106501
18. Yi Z, Zeng Y, Wu H, Chen X, Fan Y, Yang H, Tang Y, Yi Y, Wang J, Wu P. Synthesis, surface properties, crystal structure and dye-sensitized solar cell performance of TiO2 nanotube arrays anodized under different parameters. Results Phys. 2019;15(August):102609. doi:10.1016/j.rinp.2019.102609
19. Niu D, Han A, Cheng H, Ma S, Tian M, Liu L. Effects of organic solvents in anodization electrolytes on the morphology and tube-to-tube spacing of TiO2 nanotubes. Chem Phys Lett. 2019;735(August):136776. doi:10.1016/j.cplett.2019.136776
20. Zang Z, Wang P. Optimization of photoelectrochemical water splitting performance on hierarchical TiO2 nanotube arrays. Energy Environ Sci. 2012;5(4):6506-6512. doi:10.1039/c2ee03461a
21. Siyu C, Zhang S, Tan Z, Zhang S. Effect of Two-Step Anodization on Structure of TiO2 Nanotube Arrays. Springer Singapore; 2018. doi:10.1007/978-981-13-0110-0
22. Daoai W, Yu B, Wang C, Zhou F, Liu W. A novel protocol toward perfect alignment of anodized TiO2 nanotubes. Adv Mater. 2009;21(19):1964-1967. doi:10.1002/adma.200801996
23. Hongjun W, Zhang Z. Photoelectrochemical water splitting and simultaneous photoelectrocatalytic degradation of organic pollutant on highly smooth and ordered TiO2 nanotube arrays. J Solid State Chem. 2011;184(12):3202-3207. doi:10.1016/j.jssc.2011.10.012
24. Garnica-Romo MG, Mora-Mora Z, Alvarado-Gil JJ, Martínez-Flores HE. Electrochemical nanosensor based on Ag-doped TiO2 nanotubes for detecting ascorbic acid. Int J Electrochem Sci. 2024;19(2):2-11. doi:10.1016/j.ijoes.2024.100481
25. Khairy M, Kamar EM, Mousa MA. Photocatalytic activity of nano-sized Ag and Au metal-doped TiO2 embedded in rGO under visible light irradiation. Mater Sci Eng B. 2022;286(September):116023. doi:10.1016/j.mseb.2022.116023
26. Mir A, Iqbal K, Rubab S, Shah MA. Effect of concentration of Fe-dopant on the photoelectrochemical properties of Titania nanotube arrays. Ceram Int. 2022;49(1):677-682. doi:10.1016/j.ceramint.2022.09.037
27. Soundarya TL, Harini R, Manjunath K, Udayabhanu, Nirmala B, Nagaraju G. Pt-doped TiO2 nanotubes as photocatalysts and electrocatalysts for enhanced photocatalytic H2 generation, electrochemical sensing, and supercapacitor applications. Int J Hydrogen Energy. 2023;48(82):31855-31874. doi:10.1016/j.ijhydene.2023.04.289
28. Szkoda M, Siuzdak K, Lisowska-Oleksiak A. Non-metal doped TiO2 nanotube arrays for high efficiency photocatalytic decomposition of organic species in water. Phys E Low-Dimensional Syst Nanostructures. 2016;84:141-145. doi:10.1016/j.physe.2016.06.004
29. Zhang T, Ni A, Xu Y, Fu D, Lin P. N-doped TiO2 nanotube arrays with mixed phase for enhanced photocathodic protection of 304 stainless steel under visible light. J Phys Chem Solids. 2022;170(July):110923. doi:10.1016/j.jpcs.2022.110923
30. Li Z, Zhang Z, Dong Z, Wu Y, Zhu X, Cheng Z, Liu Y, Wang Y, Zheng Z, Cao X, Wang Y, Liu Y. CuS/TiO2 nanotube arrays heterojunction for the photoreduction of uranium (VI). J Solid State Chem. 2021;303(July):122499. doi:10.1016/j.jssc.2021.122499
31. Jiaqin L, Ruan L, Adeloju SB, Wu Y. BiOI/TiO2 nanotube arrays, a unique flake-tube structured p–n junction with remarkable visible-light photoelectrocatalytic performance and stability. J Chem Soc Dalt Trans. 2014;43(4):1706-1715. doi:10.1039/c3dt52394b
32. Kasuma Warda Ningsih S, Wibowo R, Gunlazuardi J. Photoelectrochemical performance of BiOI/TiO 2 nanotube arrays (TNAs) p-n heterojunction synthesized by SILAR-ultrasonication-assisted methods. R Soc Open Sci. 2023;10(6). doi:10.1098/rsos.221563
33. Ningsih, S.K.W, Wibowo, Rahmat, Gunlazuardi J. Photoelectrochemical performance of BiOI/TiO2 nanotube arrays (TNAs) p-n heterojunction synthesized by SILAR-ultrasonication-assisted methods. R Soc Open Sci. 2023;10(6). doi:10.1098/rsos.221563
34. Ningsih SKW, Syauqi MI, Wibowo R, Gunlazuardi J. Effect of potential variation on morphology and photoelectrochemical properties of TiO2 nanotube arrays (TNAs) by two-step anodization method. J Appl Electrochem. 2024;54(4):739-756. doi:10.1007/s10800-023-01999-5
35. Surahman H. Pengembangan Sel Fotoelektrokimia Menggunakan Elektroda TiO2 Nanotube Arrays Tersensitasi CdS Nanopartikel Untuk Produksi Hidrogen. In: Disertasi. ; 2017.
36. Chen X, Qin S, Denisov N, Kure-Chu SZ, Schmuki P. Pt-single atom decorated TiO2: Tuning anodic TiO2 nanotube structure and geometry toward a high-performance photocatalytic H2 production. Electrochim Acta. 2023;446(January):142081. doi:10.1016/j.electacta.2023.142081
37. Esrafili A, Salimi M, jonidi jafari A, Reza Sobhi H, Gholami M, Rezaei Kalantary R. Pt-based TiO2 photocatalytic systems: A systematic review. J Mol Liq. 2022;352:118685. doi:10.1016/j.molliq.2022.118685
38. Denisov N, Yoo JE, Schmuki P. Effect of different hole scavengers on the photoelectrochemical properties and photocatalytic hydrogen evolution performance of pristine and Pt-decorated TiO2 nanotubes. Electrochim Acta. 2019;319:61-71. doi:10.1016/j.electacta.2019.06.173
39. Kaur N, Mahajan A, Bhullar V, Singh DP, Saxena V, Debnath AK, Aswal DK, Devi D, Singh F, Chopra S. Fabrication of plasmonic dye-sensitized solar cells using ion-implanted photoanodes. RSC Adv. 2019;(9):20375-20384. doi:10.1039/c9ra02657f
40. Ge MZ, Li SH, Huang JY, Zhang KQ, Al-Deyab SS, Lai YK. TiO2 nanotube arrays loaded with reduced graphene oxide films: Facile hybridization and promising photocatalytic application. J Mater Chem A. 2015;3(7):3491-3499. doi:10.1039/c4ta06354f
41. Yang Z, Xu W, Yan B, et al. Gold and Platinum Nanoparticle-Functionalized TiO2 Nanotubes for Photoelectrochemical Glucose Sensing. ACS Omega. 2022;7(2):2474-2483. doi:10.1021/acsomega.1c06787
42. Manuel AP, Shankar K. Hot electrons in TiO2–noble metal nano-heterojunctions: Fundamental science and applications in photocatalysis. Nanomaterials. 2021;11(5). doi:10.3390/nano11051249
43. Kumar A, Choudhary P, Kumar A, Camargo PHC, Krishnan V. Recent Advances in Plasmonic Photocatalysis Based on TiO2 and Noble Metal Nanoparticles for Energy Conversion, Environmental Remediation, and Organic Synthesis. Nano Micro Small. 2022;18(1). doi:10.1002/smll.202101638
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Sherly Kasuma Warda Ningsih, Rahmat Wibowo, Jarnuzi Gunlazuardi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

