Exploring Brazilin as a Potential Breast Cancer Therapy via Molecular Dynamics Simulation Targeting ERα, 17β-HSD1, and NUDT5 Receptors

Authors

  • Umi Baroroh Indonesian School of Pharmacy https://orcid.org/0000-0003-2011-7161
  • Jasmine Aulia Dasilva Indonesian School of Pharmacy
  • Melvia Sundalian Indonesian School of Pharmacy
  • Dewi Astriany Indonesian School of Pharmacy
  • Arif Nur Muhammad Ansori Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University
  • Jonie C. Yee Applied Microbiology and Molecular Laboratory, Department of Biology, University of San Carlos

DOI:

https://doi.org/10.15408/jkv.v11i2.46465

Keywords:

Brazilin, breast cancer, ERα, molecular dynamics simulation, NUDT5, 17-β-HSD-1

Abstract

Breast cancer remains one of the leading causes of cancer-related mortality worldwide, suggesting the need for novel therapeutic agents with greater efficacy and fewer side effects. Brazilin, a natural flavonoid compound isolated from Caesalpinia sappan L., has shown promising anticancer activity, particularly against breast cancer cells. This study explores the therapeutic potential of brazilin by evaluating its interactions with three key molecular targets: estrogen receptor alpha (ERα), 17β-hydroxysteroid dehydrogenase 1 (17β-HSD1), and Nudix hydrolase 5 (NUDT5). Using molecular dynamics (MD) simulations, the study assesses the stability and binding interactions of complex systems. The results indicate that brazilin forms a stable complex with ERα, demonstrated by a low RMSD (2.6 Å) and strong hydrogen bonding with Glu353, occupancies of 97.8%, and minimal flexibility at the binding site (average RMSF < 2.5 Å). The binding free energy (ΔG Total) for the ERα–brazilin complex was -54.28 kcal/mol, indicating a stronger affinity than the reference ligand 4-hydroxytamoxifen. Brazilin also showed favorable binding with 17β-HSD1 and NUDT5, with binding energies of -39.71 kcal/mol and -23.23 kcal/mol, respectively. These findings suggest that brazilin may modulate critical targets involved in breast cancer progression, particularly in hormone receptor-positive subtypes. Further experimental validation is necessary to confirm its efficacy and optimize its therapeutic potential.

Downloads

Download data is not yet available.

References

1. Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, Bray F. Cancer statistics for the year 2020: An overview. Int J Cancer. 2021;149(4):778-789. doi:10.1002/ijc.33588

2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. doi:10.3322/caac.21660

3. Mutha RE, Tatiya AU, Surana SJ. Flavonoids as natural phenolic compounds and their role in therapeutics: an overview. Futur J Pharm Sci. 2021;7(1):25. doi:10.1186/s43094-020-00161-8

4. Syamsunarno MRA, Safitri R, Kamisah Y. Protective Effects of Caesalpinia sappan Linn. and Its Bioactive Compounds on Cardiovascular Organs. Front Pharmacol. 2021;12. doi:10.3389/fphar.2021.725745

5. Zanin JLB, De Carvalho BA, Salles Martineli P, et al. The Genus Caesalpinia L. (Caesalpiniaceae): Phytochemical and Pharmacological Characteristics. Molecules. 2012;17(7):7887-7902. doi:10.3390/molecules17077887

6. Vij T, Anil PP, Shams R, Dash KK, Kalsi R, Pandey VK, Harsanyi E, Kovacs B, Shaikh AM. A Comprehensive Review on Bioactive Compounds Found in Caesalpinia sappan. Molecules. 2023;28(17):6247. doi:10.3390/molecules28176247

7. Raptania CN, Zakia S, Fahira AI, Amalia R. Article review: Brazilin as potential anticancer agent. Front Pharmacol. 2024;15. doi:10.3389/fphar.2024.1355533

8. Yang X, Liang Y, Zhao L, Chen L, Yang Y, Wang J, Yan L, Zhang S, Liu X, Zhang H. Brazilin Inhibits the Invasion and Metastasis of Breast Cancer. Biol Pharm Bull. 2023;46(6):b22-00637. doi:10.1248/bpb.b22-00637

9. He D, Tan X ning, Li L pei, Gao W hui, Tian X fei, Zeng P hua. Brazilin Actuates Ferroptosis in Breast Cancer Cells via p53/SLC7A11/GPX4 Signaling Pathway. Chin J Integr Med. 2024;30(11):1001-1006. doi:10.1007/s11655-024-4104-y

10. Handayani S, Susidarti RA, Udin Z, Meiyanto E, Jenie RI. Brazilein in Combination with Cisplatin Inhibit Proliferation and Migration on Highly Metastatic Cancer Cells, 4T1. Indones J Biotechnol. 2017;21(1):38. doi:10.22146/ijbiotech.26106

11. Hernández-Moreno A, Nava-Tapia DA, Zuñiga-Eulogio MD, et al. Anti-Migratory Activity of Brazilin Chemodiversification on Breast Cancer Cells. Sci Pharm. 2025;93(1):4. doi:10.3390/scipharm93010004

12. Septian AD, Wardani GA, Mardianingrum R, Ruswanto R. The Virtual Screening of Flavonoid Derivatives on Progesterone, Estrogen, and HER-2 Receptor for Breast Cancer Treatment Candidate. Jurnal Kimia Valensi. 2023;9(1):163-182. doi:10.15408/jkv.v9i1.31482

13. Read A, Natrajan R. Splicing dysregulation as a driver of breast cancer. Endocr Relat Cancer. 2018;25(9):R467-R478. doi:10.1530/ERC-18-0068

14. Giacinti L, Claudio PP, Lopez M, Giordano A. Epigenetic Information and Estrogen Receptor Alpha Expression in Breast Cancer. Oncologist. 2006;11(1):1-8. doi:10.1634/theoncologist.11-1-1

15. Aka JA, Zerradi M, Houle F, Huot J, Lin SX. 17beta-hydroxysteroid dehydrogenase type 1 modulates breast cancer protein profile and impacts cell migration. Breast Cancer Research. 2012;14(3):R92. doi:10.1186/bcr3207

16. Qian J, Ma Y, Tahaney WM, et al. The novel phosphatase NUDT5 is a critical regulator of triple-negative breast cancer growth. Breast Cancer Research. 2024;26(1):23. doi:10.1186/s13058-024-01778-w

17. Hollingsworth SA, Dror RO. Molecular Dynamics Simulation for All. Neuron. 2018;99(6):1129-1143. doi:10.1016/j.neuron.2018.08.011

18. Nurlelasari N, Firdaus ARR, Harneti D, Indrayati N, Baroroh U, Yusuf M. Computational study of the potential molecular target for antibreast cancer activity of limonoid derivatives from chisocheton sp. J Appl Pharm Sci. 2020;10(2):7-12. doi:10.7324/JAPS.2020.102002

19. Astriany D, Baroroh U, Umam K. Molecular Docking of Brazilin from Secang Wood Plant (Caesalpinia sappan L.) as an Anti-Breast Cancer. al Kimiya. 2024;11(1):68-76. doi:10.15575/ak.v11i1.35590

20. Baroroh U, Setiani NA, Mardiah I, Astriany D, Yusuf M. Computational Design of Nanobody Binding to Cortisol to Improve Their Binding Affinity Using Molecular Docking and Molecular Dynamics Simulations. Indonesian Journal of Chemistry. 2022;22(1):515. doi:10.22146/ijc.71480

21. Mahmud S, Uddin MAR, Zaman M, et al. Molecular docking and dynamics study of natural compound for potential inhibition of main protease of SARS-CoV-2. J Biomol Struct Dyn. 2021;39(16):6281-6289. doi:10.1080/07391102.2020.1796808

22. Wang E, Sun H, Wang J, et al. End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chem Rev. 2019;119(16):9478-9508. doi:10.1021/acs.chemrev.9b00055

23. Shaw DE, Maragakis P, Lindorff-Larsen K, et al. Atomic-Level Characterization of the Structural Dynamics of Proteins. Science (1979). 2010;330(6002):341-346. doi:10.1126/science.1187409

24. Guterres H, Im W. Improving Protein-Ligand Docking Results with High-Throughput Molecular Dynamics Simulations. J Chem Inf Model. 2020;60(4):2189-2198. doi:10.1021/acs.jcim.0c00057

25. Hollingsworth SA, Dror RO. Molecular Dynamics Simulation for All. Neuron. 2018;99(6):1129-1143. doi:10.1016/j.neuron.2018.08.011

26. J. R. Yunta M. It Is Important to Compute Intramolecular Hydrogen Bonding in Drug Design? American Journal of Modeling and Optimization. 2017;5(1):24-57. doi:10.12691/ajmo-5-1-3

27. Nettles KW, Greene GL. Ligand Control of Coregulator Recruitment to Nuclear Receptors. Annu Rev Physiol. 2005;67(1):309-333. doi:10.1146/annurev.physiol.66.032802.154710

28. Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, Greene GL. The Structural Basis of Estrogen Receptor/Coactivator Recognition and the Antagonism of This Interaction by Tamoxifen. Cell. 1998;95(7):927-937. doi:10.1016/S0092-8674(00)81717-1

29. Marchais-Oberwinkler S, Henn C, Möller G, Klein T, Negri M, Oster A, Spadaro A, Werth R, Wetzel M, Xu K, Frotscher M, Hartmann RW, Adamski J. 17β-Hydroxysteroid dehydrogenases (17β-HSDs) as therapeutic targets: Protein structures, functions, and recent progress in inhibitor development. J Steroid Biochem Mol Biol. 2011;125(1-2):66-82. doi:10.1016/j.jsbmb.2010.12.013

30. Patel P, Prasad A, Srivastava K, Singh SS, Chakrabarty D, Misra P. Updates on steroidal alkaloids and glycoalkaloids in Solanum spp.: Biosynthesis, in vitro production and pharmacological values. In: 2021:99-127. doi:10.1016/B978-0-12-819487-4.00012-4

31. Tian JL, Zhao M, Xu JY, Lv TM, Liu XC, Sun S, Guan Q, Zhou ZC, Wu J, Zhao MY, Li Y, Liu HX, Niu SL, Hu P. Inhibitory Mechanism of Prenylated Flavonoids Isolated from Mulberry Leaves on α-Glucosidase by Multi-Spectroscopy and Molecular Dynamics Simulation. J Agric Food Chem. 2023;71(23):9135-9147. doi:10.1021/acs.jafc.3c00776

32. Gupta M, Ahmad J, Ahamad J, Kundu S, Goel A, Mishra A. Flavonoids as promising anticancer therapeutics: Contemporary research, nanoantioxidant potential, and future scope. Phytotherapy Research. 2023;37(11):5159-5192. doi:10.1002/ptr.7975

33. Hou T, Wang J, Li Y, Wang W. Assessing the Performance of the MM/PBSA and MM/GBSA Methods. 1. The Accuracy of Binding Free Energy Calculations Based on Molecular Dynamics Simulations. J Chem Inf Model. 2011;51(1):69-82. doi:10.1021/ci100275a

34. Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015;10(5):449-461. doi:10.1517/17460441.2015.1032936

35. McLennan AG. The Nudix hydrolase superfamily. Cell Mol Life Sci. 2006;63(2):123-143. doi:10.1007/s00018-005-5386-7

36. Wu Y, Hsieh T chen, Wu JM, Wang X, Christopher JS, Pham AH, Swaby JDL, Lou L, Xie ZR. Elucidating the Inhibitory Effect of Resveratrol and Its Structural Analogs on Selected Nucleotide-Related Enzymes. Biomolecules. 2020;10(9):1223. doi:10.3390/biom10091223

37. Carreras-Puigvert J, Zitnik M, Jemth AS, Carter M, Unterlass JE, Hallstrom B, Loseva O, Karem Z, Calderon-Montano JM, Lindskog C, Edqvist PH, Matuszewski DM, Blal HA, Berntsson RPA, Haggblad M, Martens U, Studham M, Lundgren B, Wahlby C, Sonnhammer ELL, Lundberg E, Stenmark P, Zupan B, Helleday T. A comprehensive structural, biochemical and biological profiling of the human NUDIX hydrolase family. Nat Commun. 2017;8(1):1541. doi:10.1038/s41467-017-01642-w

38. Garro HA, Pungitore CR. DNA Related Enzymes as Molecular Targets for Antiviral and Antitumoral Chemotherapy. A Natural Overview of the Current Perspectives. Curr Drug Targets. 2018;20(1):70-80. doi:10.2174/1389450119666180426103558

39. Sinuhaji TRF, Ramadhani S, Setiawan VK, Baroroh U. Targeting diabetes with flavonoids from Indonesian medicinal plants: a review on mechanisms and drug discovery. Naunyn Schmiedebergs Arch Pharmacol. Published online April 9, 2025. doi:10.1007/s00210-025-04139-2

40. Page BDG, Valerie NCK, Wright RHG, Wallner O, Isaksson R, Carter M, Rudd SG, Loseva O, Jemth AS, Almlof I, Font-Mateu J, Llona-Minguez S, Baranczewski P, Jeppsson F, Homan E, Almqvist H, Axelsson H, Regmi S, Lena-Gustavsson AL, Lundback T, Scobie M, Stromberg K, Stenmark P, Beato M, Helleday T. Targeted NUDT5 inhibitors block hormone signaling in breast cancer cells. Nat Commun. 2018;9(1):250. doi:10.1038/s41467-017-02293-7

Downloads

Published

30-11-2025

Issue

Section

Jurnal Kimia VALENSI, Volume 11, No. 2, November 2025

How to Cite

Exploring Brazilin as a Potential Breast Cancer Therapy via Molecular Dynamics Simulation Targeting ERα, 17β-HSD1, and NUDT5 Receptors. (2025). Jurnal Kimia Valensi, 11(2), 226-237. https://doi.org/10.15408/jkv.v11i2.46465