In-Silico Studies of Potential Anti-Alzheimer Compounds from Spondias dulcis

Authors

  • Ahmad Fathoni Department of Chemistry, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta https://orcid.org/0000-0003-0011-9637
  • Aninda Salma Department of Chemistry, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta
  • Nurul Amilia Department of Chemistry, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta
  • Tarso Rudiana Departmen of Chemistry, Faculty of Science Pharmacy and Health, Universitas Mathla'ul Anwar https://orcid.org/0000-0003-2353-0322

DOI:

https://doi.org/10.15408/jkv.v11i2.46175

Keywords:

Alzheimer, molecular docking, molecular dynamic, Spondias dulcis

Abstract

Alzheimer's is a chronic neurodegenerative disease characterized by low levels of acetylcholine and the accumulation of abnormal neuritic plaques, leading to rapid memory decline and cognitive impairment. Compounds found in the kedondong plant (Spondias dulcis) have been reported to exhibit in vitro activity as acetylcholinesterase inhibitors. This study examines the potential of active compounds in Spondias dulcis in their interaction with acetylcholinesterase, an enzyme implicated in the pathogenesis of Alzheimer's disease. The enzyme was obtained from the Protein Data Bank (PDB ID: 4EY7). The test ligands were screened based on Lipinski's rule and docked with the receptor. The results of molecular docking which yielded the five best affinity energy values were followed by ADMET testing (absorption, distribution, metabolism, excretion, and toxicity). The test ligand ellagic acid deoxyhexoside showed binding energy at -11.213 kcal/mol. Molecular dynamics simulations were performed using YASARA with AMBER14 force fields for 50 ns. The test ligand ellagic acid eoxyhexoside showed an MM-PBSA value of -51.277 kcal/mol and exhibited good complex stability with an average total RMSD value of 2 Å and low inter-residue fluctuation values. These findings are consistent with the results obtained from the comparator ligand, donepezil. Therefore, compounds in Spondias dulcis have the potential to act as acetylcholinesterase inhibitors and can be considered for the development of therapies for Alzheimer's disease. 

Downloads

Download data is not yet available.

References

the Mystery. Published online 2003:1-65. https://www.bu.edu/alzresearch/files/pdf/ADEARUnravelingtheMystery12-033.pdf

2. Francis PT. The Interplay of Neurotransmitters in Alzheimer’s Disease. CNS Spectr. 2005;10(S18):6–9. doi:10.1017/S1092852900014164

3. Martínez-Coria H, Arrieta-Cruz I, Gutiérrez-Juárez R, López-Valdés HE. Anti-Inflammatory Effects of Flavonoids in Common Neurological Disorders Associated with Aging. Int J Mol Sci. 2023;24(5). doi:10.3390/ijms24054297

4. Najihah VH, Mugiyanto E, Permadi YW. Aktivitas Antioksidan, Total Fenol dan Total Flavonoid Tanaman Kedondong (Spondias dulcis Soland ex Park). Farmasains. 2018;5(2):61-67.

5. Sinan KI, Zengin G, Zheleva-Dimitrova D, et al. Exploring the chemical profiles and biological values of two spondias species (S. Dulcis and S. Mombin): Valuable sources of bioactive natural products. Antioxidants. 2021;10(11). doi:10.3390/antiox10111771

6. Eklund P., Backman M., Kronberg L., Smeds A., Sjöholm RE. Identification of lignans by liquid chromatography_electrospray ionization ion-trap mass spectrometry. J Mass Spectrom. 2008;43(42-107).

7. Somantri UW, Rudiana T, Kuncoroyekti P. Aktivitas Antioksidan dari Ekstrak Daun Kedondong (Spondias dulcis) Melalui Penangkal Radikal Superoksida. J Kartika Kim. 2023;5(2):152-156. doi:10.26874/jkk.v5i2.168

8. Ridhwan M. Aktivitas Antidiabetes In Vitro Dan In Silico Ekstrak Daun Kedondong (Spondias Dulcis) Terhadap Penghambatan Alfa Glukosidase. UIN Syarif Hidayatullah Jakarta; 2022.

9. Cheung J, Rudolph MJ, Burshteyn F, et al. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem. 2012;55(22):10282-10286. doi:10.1021/jm300871x

10. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1-3):3-26. doi:10.1016/s0169-409x(00)00129-0

11. Adelin T, - F, Aliza D. Penambatan Molekuler Kurkumin Dan Analognya Pada Enzim Siklooksigenase-2. J Med Vet. 2013;7(1). doi:10.21157/j.med.vet..v7i1.2916

12. Guan L, Yang H, Cai Y, et al. ADMET-score - a comprehensive scoring function for evaluation of chemical drug-likeness. Medchemcomm. 2019;10(1):148-157. doi:10.1039/c8md00472b

13. Rahmadani N, Yudani T, Raras M, Arthamin MZ. Analysis Interaction of Immunoglobulin G and Immunoglobulin A Against PstS1 as a Basis Specimen Selection for M . tuberculosis Rapid Test Diagnostic Agent. Published online 2023.

14. Sari IW, Junaidin J, Pratiwi D. Studi Molecular Docking Senyawa Flavonoid Herba Kumis Kucing (Orthosiphon Stamineus B.) Pada Reseptor Α-Glukosidase Sebagai Antidiabetes Tipe 2. J Farmagazine. 2020;7(2):54. doi:10.47653/farm.v7i2.194

15. Wagner J. Biopharmaceutics and Relevant Pharmacokinetics. Drug Intellegence Publication; 1971.

16. Le J. Drug Absorption. MSD Manual.

17. Roskoki R. Janus kinase (JAK) Inhibitors in The Treatment of Neoplastic and Inflammatory Disorders. Pharmacol Res. 2022;183.

18. Naufa F, Mutiah R, Yen Y, Indrawijaya A. Studi in Silico Potensi Senyawa Katekin Teh Hijau (Camellia sinensis) sebagai Antivirus SARS CoV-2 terhadap Spike Glycoprotein (6LZG) dan Main Protease (5R7Y). J Food Pharm Sci. 2022;10(1):584-596. www.journal.ugm.ac.id/v3/JFPA

19. Novian DR, Ikhwani AZN, Winarso A. Uji Farmakodinamik, Drug-Likeness, Farmakokinetik dan Interaksi Senyawa Aktif Kayu Ular (Strychnos lucida) sebagai Inhibitor Plasmodium falciparum Secara In Silico. J Vet Nusant. 2019;2(1):70-78. http://www.rscb.org/pdb/

20. Klebe G, Böhm HJ. Energetic and entropic factors determining binding affinity in protein-ligand complexes. Period Biol. 1998;100(SUPPL. 2):77-83.

21. Nguyen NT, Nguyen TH, Pham TNH, et al. Autodock Vina Adopts More Accurate Binding Poses but Autodock4 Forms Better Binding Affinity. J Chem Inf Model. 2020;60(1):204-211. doi:10.1021/acs.jcim.9b00778

22. Meyer M, Wilson P, Schomburg D. Hydrogen bonding and molecular surface shape complementarity as a basis for protein docking. J Mol Biol. 1996;264(1):199-210. doi:10.1006/jmbi.1996.0634

23. Durst AC, Castoria KE, Bhatt RN. Heitler-London model for acceptor-acceptor interactions in doped semiconductors. Published online 2017:1-19.

24. Apriali K, Triana E, Farhani M, Khoirunnisa A, Alfain Y. Studi Penambatan Molekul dan Prediksi Admet Senyawa Metabolit Sekunder Tanaman Kelor (Moringa Oleifera L.) Sebagai Inhibitor BACE1. J Ilm Farm. 2022;12(1):58-67.

25. Wessel MD, Mente S. ADME by Computer. Annu Reports Med Chem Sect VI - Top Drug Des Discov. 2001;36(10):257-266.

26. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103-141. doi:10.1016/j.pharmthera.2012.12.007

27. BPOM. Pedoman Uji Toksisitas Nonklinik Secara In Vivo.; 2014.

28. Hassan NM, Alhossary AA, Mu Y, Kwoh CK. Protein-Ligand Blind Docking Using QuickVina-W With Inter-Process Spatio-Temporal Integration. Sci Rep. 2017;7(1):15451. doi:10.1038/s41598-017-15571-7

29. Liu K, Watanabe E, Kokubo H. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. J Comput Aided Mol Des. 2017;31(2):201-211. doi:10.1007/s10822-016-0005-2

30. Ormeño F, General IJ. Convergence and equilibrium in molecular dynamics simulations. Commun Chem. 2024;7(1):1-11. doi:10.1038/s42004-024-01114-5

31. Celej MS, Montich GG, Fidelio GD. Protein stability induced by ligand binding correlates with changes in protein flexibility. Protein Sci. 2003;12(7):1496-1506. doi:10.1110/ps.0240003

32. Pourshojaei Y, Abiri A, Eskandari K, Haghighijoo Z, Edraki N, Asadipour A. Phenoxyethyl Piperidine/Morpholine Derivatives as PAS and CAS Inhibitors of Cholinesterases: Insights for Future Drug Design. Sci Rep. 2019;9(1):1-20. doi:10.1038/s41598-019-56463-2

33. Tuccinardi T. What is the current value of MM/PBSA and MM/GBSA methods in drug discovery? Expert Opin Drug Discov. 2021;16(11):1233-1237. doi:10.1080/17460441.2021.1942836

34. Krieger E, Vriend G. New ways to boost molecular dynamics simulations. J Comput Chem. 2015;36(13):996-1007. doi:10.1002/jcc.23899

35. Dewick PM. Medicinal Natural Products: A Biosynthetic Approach. 2nd ed. John Wiley & Sons Ltd; 2002. doi:10.1002/9780470742761

36. Kustina E, Zulharmita, Misfadhila S. Traditional uses, phytochemistry and pharmacology of Ficus religiosa: A review. Int J Sci Healthc Res. 2020;5(3):494-500. doi:10.1016/j.jep.2011.01.046

37. Rashid NYA. Chemical Constituents and Biological Activities of Curcuma Xanthorrhiza and Curcuma Heyneana. Universiti Putra Malaysia; 2004.

38. Barba-Ostria C, Carrera-Pacheco SE, Gonzalez-Pastor R, et al. Evaluation of Biological Activity of Natural Compounds: Current Trends and Methods. Molecules. 2022;27(14):1-35. doi:10.3390/molecules27144490

Downloads

Published

30-11-2025

Issue

Section

Jurnal Kimia VALENSI, Volume 11, No. 2, November 2025

How to Cite

In-Silico Studies of Potential Anti-Alzheimer Compounds from Spondias dulcis. (2025). Jurnal Kimia Valensi, 11(2), 238-249. https://doi.org/10.15408/jkv.v11i2.46175