Isolation and Structural Characterization of Biflavonoids from Araucaria hunsteinii and Araucaria columnaris: Chemotaxonomic and Pharmacological Perspectives

Authors

  • Purwantiningsih Sugita Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University https://orcid.org/0000-0002-0305-8123
  • Widya Sekar Ayu Ningtias Graduate Student of Chemistry Study Program, Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University
  • Rafi Chandra Priandanda Graduate Student of Chemistry Study Program, Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University
  • Auliya Ilmiawati Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University
  • Kurniawanti Kurniawanti Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University
  • Dhea Demitri Agusta Graduate Student of Chemistry Study Program, Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University
  • Hanhan Dianhar Chemistry Study Program, Faculty of Mathematics and Natural Sciences (FMIPA), Jakarta State University
  • Dyah Utami Cahyaning Rahayu Department of Chemistry, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia

DOI:

https://doi.org/10.15408/jkv.v11i2.46173

Keywords:

Araucaria, biflavonoid, chemotaxonomy 4′,4‴,7,7″-tetra-O-methylcupressuflavone, 7-O-methylcupressuflavone

Abstract

Biflavonoids are a distinctive class of dimeric flavonoids known for their diverse biological activities and chemotaxonomic significance. In this study, two biflavonoids were isolated from the acetone extracts of Araucaria hunsteinii twigs and Araucaria columnaris leaves collected from Bogor Botanical Garden, Indonesia. Chromatographic techniques, including Sephadex LH-20 column chromatography and preparative thin-layer chromatography, were employed for purification, followed by structural elucidation using LC-MS/MS and 1D/2D NMR spectroscopy. The compounds were identified as 4',4''',7,7''-tetra-O-methylcupressuflavone (1) and 7-O-methylcupressuflavone (2). Notably, this is the first report of 7-O-methylcupressuflavone isolated from A. columnaris leaves, providing new chemotaxonomic insights into the genus Araucaria. A literature-based pharmacological analysis revealed promising cytotoxic and α-glucosidase-inhibitory activities of the isolated compounds. These findings contribute to the phytochemical profiling and highlight the pharmaceutical potential of Araucaria-derived biflavonoids.

Downloads

Download data is not yet available.

References

1. Yamaguchi LF, Vassão DG, Kato MJ, Di Mascio P. Biflavonoids from Brazilian pine Araucaria angustifolia as potentials protective agents against DNA damage and lipoperoxidation. Phytochemistry. 2005;66(18):2238-2247. doi:10.1016/j.phytochem.2004.11.014

2. Patial PK, Cannoo DS. Phytochemical profile , antioxidant potential and DFT study of Araucaria columnaris (G. Forst.) Hook. branch extracts. Nat Prod Res. 2019;35(22):4611-4615. doi:10.1080/14786419.2019.1696330

3. Kurniawanti, Agusta DD, Sugita P, Suparto IH, Dianhar H. Bioactive compounds of flavone dimers from Indonesian Araucaria columnaris leaves. Rasayan J Chem. 2023;16(3):1872-1882. doi:10.31788/RJC.2023.1638390

4. Yu S, Yan H, Zhang L, et al. A review on the phytochemistry, pharmacology, and pharmacokinetics of amentoflavone, a naturally-occurring biflavonoid. Molecules. 2017;22(2). ):1–23 doi:10.3390/molecules22020299

5. Mercader AG, Pomilio AB. QSAR study of flavonoids and biflavonoids as influenza H1N1 virus neuraminidase inhibitors. Eur J Med Chem. 2010;45(5):1724-1730. doi:10.1016/j.ejmech.2010.01.005

6. Li M, Li B, Xia Z-M, et al. Anticancer effects of five biflavonoids from Ginkgo biloba L. male flowers In Vitro. Molecules. 2019;24(8):1-13. doi:10.3390/molecules24081496

7. Wang L, Song J, Liu A, et al. Research progress of the antiviral bioactivities of natural flavonoids. Nat Products Bioprospect. 2020;10(5):271-283. doi:10.1007/s13659-020-00257-x

8. de Freitas CS, Rocha MEN, Sacramento CQ, et al. Agathisflavone, a biflavonoid from Anacardium occidentale L., inhibits influenza virus Neuraminidase. Curr Top Med Chem. 2019;20(2):111-120. doi:10.2174/1568026620666191219150738

9. Tabares-Guevara JH, Lara-Guzmán OJ, Londoño-Londoño JA, Sierra J, León-Varela YM, Álvarez-Quintero RM, Osorio E, Ramirez-Pineda. Natural biflavonoids modulate macrophage-oxidized LDL interaction in vitro and promote atheroprotection in vivo. Front Immunol. 2017;8(923):1–17. doi:10.3389/fimmu.2017.00923

10. Menezes JCJMDS, Campos VR. Natural biflavonoids as potential therapeutic agents against microbial diseases. Sci Total Environ. 2021;769:1–21. doi:10.1016/j.scitotenv.2021.145168

11. Matsabisa MG, Chukwuma CI, Ibeji CU, Chaudhary SK. Stem bark exudate (resin) of Araucaria cunninghamii Aiton ex D. Don (hoop pine) abates glycation, α-glucosidase and DPP-IV activity and modulates glucose utilization in Chang liver cells and 3T3-L1 adipocytes. South African J Bot. 2019;121:193-199. doi:10.1016/j.sajb.2018.11.004

12. Ayepola OR, Cerf ME, Brooks NL, Oguntibeju OO. Kolaviron, a biflavonoid complex of Garcinia kola seeds modulates apoptosis by suppressing oxidative stress and inflammation in diabetes-induced nephrotoxic rats. Phytomedicine. 2014;21(14):1785-1793. doi:10.1016/j.phymed.2014.09.006

13. Liu PK, Weng ZM, Ge GB, Li HL, Ding LL, Dai ZR, Hou XD, Leng YH, Yu Y, Hou J. Biflavones from Ginkgo biloba as novel pancreatic lipase inhibitors: Inhibition potentials and mechanism. Int J Biol Macromol. 2018;118:2216-2223. doi:10.1016/j.ijbiomac.2018.07.085

14. Sugita P, Handayani SDP, Agusta DD, Ambarsari L, Dianhar H, Rahayu DUC. Combined in-silico and in-vitro approaches to evaluate the inhibitory the potential of biflavonoids from Araucaria plants against α-glucosidase as target protein. Rasayan J Chem. 2023;16(1):361-375. doi:10.31788/RJC.2023.1618147

15. El-Nashar HAS, Mostafa NM, Eldahshan OA, Singab ANB. A new antidiabetic and anti-inflammatory biflavonoid from Schinus polygama (Cav.) Cabrera leaves. Nat Prod Res. 2022;36(5):1182-1190. doi:10.1080/14786419.2020.1864365

16. Talaat AN, Ebada SS, Labib RM, Esmat A, Youssef FS, Singab ANB. Verification of the anti-inflammatory activity of the polyphenolic-rich fraction of Araucaria bidwillii Hook. using phytohaemagglutinin-stimulated human peripheral blood mononuclear cells and virtual screening. J Ethnopharmacol. 2018;226:44-47. doi:10.1016/j.jep.2018.07.026

17. Ye Y, Guo Y, Luo YT. Anti-inflammatory and analgesic activities of a novel biflavonoid from shells of camellia oleifera. Int J Mol Sci. 2012;13(10):12401-12411. doi:10.3390/ijms131012401

18. Jnawali HN, Park YG, Jeon D, Lee E, Kim Y. Anti-inflammatory activities of biapigenin mediated by actions on p38 MAPK pathway. Bull Korean Chem Soc. 2015;36(9):2325-2329. doi:10.1002/bkcs.10460

19. Ito T, Yokota R, Watarai T, et al. Isolation of six isoprenylated biflavonoids from the leaves of Garcinia subelliptica. Chem Pharm Bull. 2013;61(5):551-558. doi:10.1248/cpb.c12-01057

20. Branco CS, Rodrigues TS, Lima ED, Calloni C, Scola G, Salvador M. Chemical constituents and biological activities of Araucaria angustifolia (Bertol.) O. Kuntze: A Review. J Org Inorg Chem. 2016;2(1). doi:10.21767/2472-1123.100008

21. Hwang CH, Lin YL, Liu YK, Chen CH, Wu HY, Chang CC, Chang CY, Chang YK, Chiu YH, Liao KW, Lai YK. 7,7′′-Dimethoxyagastisflavone-induced apoptotic or autophagic cell death in different cancer cells. Phyther Res. 2012;26(4):528-534. doi:10.1002/ptr.3583

22. Lee S, Kim H, Kang JW, Kim JH, Lee DH, Kim MS, Yang Y, Woo ER, Kim YM, Hong J, Yoon DY. The Biflavonoid amentoflavone induces apoptosis via supressing E7 expression, cell cycle arrest at sub-G1 phase, and mitochondria-emanated intrinsic pathways in human cervical cancer cells. J Med Food. 2011;14(7):808-816. doi:10.1089/jmf.2010.1428

23. Wang ZX, Cheng MC, Zhang XZ, Hong ZL, Gao MZ, Kan XX, Li Q, Wang YJ, Zhu XX, Xiao HB. Cytotoxic biflavones from Stellera chamaejasme. Fitoterapia. 2014;99(1):334-340. doi:10.1016/j.fitote.2014.10.002

24. Sugita P, Agusta DD, Dianhar H, Suparto IH, Kurniawanti K, Rahayu DUC, Irfana L. The cytotoxicity and SAR analysis of biflavonoids isolated from Araucaria hunsteinii K. Schum. leaves against MCF-7 and HeLa cancer cells. J Appl Pharm Sci. 2023;13(10):199-209. doi:10.7324/japs.2023.145302

25. Irfana L, Agusta DD, Arifin B, Wahyudi ST, Achmadi SS, Sugita P. Isolation of Biflavonoids from Indonesian Araucaria cunninghamii Mudie leaves and their activity againts MCF7 and 20s proteosome. Trends Sci. 2025;22(3):1–13. doi: 10.48048/tis.2025.9198

26. Chen J, Yang ML, Zeng J, Gao K. Antimicrobial activity of Araucaria cunninghamii Sweet and the chemical constituents of its twigs and leaves. Phytochem Lett. 2013;6(1):41-45. doi:10.1016/j.phytol.2012.10.013

27. Kim HP, Park H, Son KH, Chang HW, Kang SS. Biochemical pharmacology of biflavonoids: Implications for anti-inflammatory action. Arch Pharm Res. 2008;31(3):265-273. doi:10.1007/s12272-001-1151-3

28. Frezza C, Venditti A, De Vita D, Toniolo C, Franceschin M, Ventrone A, Tomassini L, Foddai S, Guiso M, Nicoletti M, Bianco A, Serafini M. Phytochemistry, chemotaxonomy, and biological activities of the araucariaceae family—a review. Plants. 2020;9(7):1-73. https://doi.org/10.3390/plants9070888.

29. Agusta DD. Biflavonoid dari daun Araucaria hunsteinii K. Schum Indonesia dan bioaktivitasnya sebagai antikanker terhadap sel lestari MSC-7 dan HeLa [M.Si. Thesis]. IPB University; 2022. https://repository.ipb.ac.id/handle/123456789/112448

30. Deforest JC, Du L, Joyner PM. 4,4′′′,7,7″-Tetra-O-methylcupressuflavone inhibits seed germination of Lactuca sativa. J Nat Prod. 2014;77(1):1093-1096. doi:10.1021/np4010739

31. Ilyas N, Ilyas M, Rahman W, Okigawa M, Kawano N. Biflavones from the leaves of Araucaria excelsa. Phytochemistry. 1978;17(5):987-990. doi:10.1016/S0031-9422(00)88662-8

32. Rahayu DUC. Biflavonoid dari daun dan ranting Agathis robusta

(Araucariaceae) Indonesia dan bioaktivitasnya sebagai antikanker [M.Si. Thesis]. ITB; 2013. http://digilib.itb.ac.id/assets/files/2019/2013_TS_PP_DYAH_UTAMI_CAHYANING_RAHAYU_1-COVER.pdf

33. Ofman DJ, Markham KR, Vilain C, Molloy BPJ. Flavonoid profiles of New Zealand kauri and other species of Agathis. Phytochemistry. 1995;38(5):1223-1228. doi:10.1016/0031-9422(94)00783-P

34. Gadek PA, Quinn CJ, Ashford AE. Localization of the biflavonoid fraction in plant leaves, with special reference to Agathis robusta (C. Moore Ex F. Muell.) F.M. Bail. Aust J Bot. 1984;32(1):15-31. doi:10.1071/BT9840015

35. Molfetta FA, Honório KM, Alves CN, Da Silva ABF. A study on the anti-HIV activity of biflavonoid compounds by using quantum chemical and chemometric methods. J Mol Struct THEOCHEM. 2004;674:191-197. doi:10.1016/j.theochem.2003.12.007

36. Wu B, Song HP, Zhou X, Liu XG, Gao W, Dong X, Li HJ, Li P, Yang H.. Screening of minor bioactive compounds from herbal medicines by in silico docking and the trace peak exposure methods. J Chromatogr A. 2016;1436:91-99. doi:10.1016/j.chroma.2016.01.062

37. Haque E, Bari MS, Khandokar L, Anjum J, Jantan I, Seidel V, Haque MA. An updated and comprehensive review on the ethnomedicinal uses, phytochemistry, pharmacological activity and toxicological profile of Tinospora crispa (L.) Hook. f. & Thomson. Phytochemistry Reviews. 2023;22(1):211–73. doi:10.1007/s11101-022-09843-y

Downloads

Published

30-11-2025

Issue

Section

Jurnal Kimia VALENSI, Volume 11, No. 2, November 2025

How to Cite

Isolation and Structural Characterization of Biflavonoids from Araucaria hunsteinii and Araucaria columnaris: Chemotaxonomic and Pharmacological Perspectives. (2025). Jurnal Kimia Valensi, 11(2), 250-259. https://doi.org/10.15408/jkv.v11i2.46173