Fabrication and Synthesis of Fluorescent Carbon Nanodots from Black Sticky Rice as Probes for detection Mg2+ ions
DOI:
https://doi.org/10.15408/jkv.v11i2.45394Keywords:
Black sticky rice, carbon nanodots, fabrication, magnesium ion, synthesisAbstract
Herein, fluorescent carbon nanodots (C-dots) with average diameter of 5.51 nm were fabricated from black sticky rice by using carbonization method. These C-dots have been synthesized with magnesium (Mg2+) ions to investigate their potential application as probes for detection Mg2+ ions. The as-obtained C-dots were measured their absorption (Abs), photoluminescence (PL), and FTIR spectra, X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM) image. According to their Abs spectrum, the Abs peak at 276 nm confirmed the presence of C-dots in ethanol solution. Fortunately, the PL peak at 427 nm corresponded to their blue emission color. The XRD patterns and the TEM image confirmed also the formation of amorphous state and monodispersed spherical C-dots, respectively. When the as-prepared C-dots were synthesized with Mg2+ ions, the PL intensities of C-dots quenched as increasing the concentration of Mg2+ ions. A characteristic PL quenching of the C-dots through Mg2+ chelation demonstrated the sensing system up to the detection limit of 2.98 µM. This is the first reporting the application of C-dots as sensors for detection Mg2+ ions. These findings can pave the large opportunity for application of these C-dots in sensing, bioimaging, drug delivery, and so on.Downloads
References
1. Al Alawi, A. M.; Majoni, S. W.; Falhammar, H. Magnesium and Human Health: Perspectives and Research Directions. International Journal of Endocrinology. Hindawi Limited 2018. https://doi.org/10.1155/2018/9041694.
2. Al Alawi, A. M.; Al Badi, A.; Al Huraizi, A.; Falhammar, H. Magnesium: The Recent Research and Developments. In Advances in Food and Nutrition Research; Academic Press Inc., 2021; Vol. 96, pp 193–218. https://doi.org/10.1016/bs.afnr.2021.01.001.
3. Wilschefski, S. C.; Baxter, M. R. Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects. Clinical Biochemist Reviews 2019, 40 (3), 115–133. https://doi.org/10.33176/AACB-19-00024.
4. Ghaedi, M.; Ahmadi, F.; Shokrollahi, A. Simultaneous Preconcentration and Determination of Copper, Nickel, Cobalt and Lead Ions Content by Flame Atomic Absorption Spectrometry. J Hazard Mater 2007, 142 (1–2), 272–278. https://doi.org/10.1016/j.jhazmat.2006.08.012.
5. Gupta, V. K.; Jain, A. K.; Maheshwari, G.; Lang, H.; Ishtaiwi, Z. Copper(II)-Selective Potentiometric Sensors Based on Porphyrins in PVC Matrix. Sens Actuators B Chem 2006, 117 (1), 99–106. https://doi.org/10.1016/j.snb.2005.11.003.
6. Murugan, N.; Sundramoorthy, A. K. Green Synthesis of Fluorescent Carbon Dots from Borassus Flabellifer Flowers for Label-Free Highly Selective and Sensitive Detection of Fe3+ Ions. New Journal of Chemistry 2018, 42 (16), 13297–13307. https://doi.org/10.1039/c8nj01894d.
7. Lu, W.; Qin, X.; Liu, S.; Chang, G.; Zhang, Y.; Luo, Y.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. Economical, Green Synthesis of Fluorescent Carbon Nanoparticles and Their Use as Probes for Sensitive and Selective Detection of Mercury(II) Ions. Anal Chem 2012, 84 (12), 5351–5357. https://doi.org/10.1021/ac3007939.
8. Abinaya, K.; Rajkishore, S. K.; Lakshmanan, A.; Anandham, R.; Dhananchezhiyan, P.; Praghadeesh, M. Synthesis and Characterization of Carbon Dots from Coconut Shell by Optimizing the Hydrothermal Carbonization Process. Journal of Applied and Natural Science 2021, 13 (4), 1151–1157. https://doi.org/10.31018/jans.v13i4.2916.
9. Ngara, Z. S.; Pasangka, B.; Ngana, F. R.; Elin, A. Sintesis Material Karbon Nanodots Dari Buah Sirsak Dengan Logam Besi Dan Kajian Spektrum Serapannya (Synthesis of Carbon Nanodots Material from Soursop Juice with Ferric Metal and Study on Their Absorption Spectrum). Jurnal Fisika sains dan Aplikasinya 2021, 6 (1), 1–7.
10. Kukreja, D.; Mathew, J.; Lakshmipathy, R.; Sarada, N. C. Synthesis of Fluorescent Carbon Dots from Mango Peels. Int J Chemtech Res 2015, 8 (5), 61–64.
11. Sari, E. K.; Tumbelaka, R. M.; Ardiyanti, H.; Istiqomah, N. I.; Chotimah; Suharyadi, E. Green Synthesis of Magnetically Separable and Reusable Fe3O4/Cdots Nanocomposites Photocatalyst Utilizing Moringa Oleifera Extract and Watermelon Peel for Rapid Dye Degradation. Carbon Resources Conversion 2023, 6 (4), 274–286. https://doi.org/10.1016/j.crcon.2023.04.003.
12. Jena, L.; Soren, D.; Deheri, P. K.; Pattojoshi, P. Preparation, Characterization and Optical Properties Evaluations of Bamboo Charcoal. Current Research in Green and Sustainable Chemistry 2021, 4, 1–5. https://doi.org/10.1016/j.crgsc.2021.100077.
13. Ngara, Z. S.; Elin, A.; Ngana, F. R.; Bukit, M.; Lerrick, R. I. Facile Synthesis of Fluorescent Carbon Nanodots From Soursop Peel As a Carbon Source for Ferric Metal Ion Sensor. Engineering and Technology Journal 2023, 08 (10), 2904–2910. https://doi.org/10.47191/etj/v8i10.13.
14. Jaya, M.; Johanes, A. Z.; Pingak, R. K.; Ngara, Z. S. Study on Optical Properties of Carbon Nanodots by Annealing of Rice Powder as a Carbon Source. J Phys Conf Ser 2022, 2243 (1), 012103. https://doi.org/10.1088/1742-6596/2243/1/012103.
15. Zheng, J. X.; Liu, X. H.; Yang, Y. Z.; Liu, X. G.; Xu, B. S. Rapid and Green Synthesis of Fluorescent Carbon Dots from Starch for White Light-Emitting Diodes. Xinxing Tan Cailiao/New Carbon Materials 2018, 33 (3), 276–288. https://doi.org/10.1016/S1872-5805(18)60339-7.
16. Shahraki, H. S.; Bushra, R.; Shakeel, N.; Ahmad, A.; Quratulen; Ahmad, M.; Ritzoulis, C. Papaya Peel Waste Carbon Dots/Reduced Graphene Oxide Nanocomposite: From Photocatalytic Decomposition of Methylene Blue to Antimicrobial Activity. Journal of Bioresources and Bioproducts 2023, 8 (2), 162–175. https://doi.org/10.1016/j.jobab.2023.01.009.
17. Liu, Y.; Zhao, Y.; Zhang, Y. One-Step Green Synthesized Fluorescent Carbon Nanodots from Bamboo Leaves for Copper(II) Ion Detection. Sens Actuators B Chem 2014, 196, 647–652. https://doi.org/10.1016/j.snb.2014.02.053.
18. Zhang, X.; Zhang, K.; Yao, X.; Wu, Z.; Lv, C.; Li, Q. Facile Synthesis of Blue Fluorescent Carbon Nanodots Based on the Pyrolysis of Straw for Iron (III) Detection and Cellular Imaging. Int J Environ Anal Chem 2020, 1–16. https://doi.org/10.1080/03067319.2020.1789612.
19. Myint, A. A.; Rhim, W. K.; Nam, J. M.; Kim, J.; Lee, Y. W. Water-Soluble, Lignin-Derived Carbon Dots with High Fluorescent Emissions and Their Applications in Bioimaging. Journal of Industrial and Engineering Chemistry 2018, 66, 387–395. https://doi.org/10.1016/j.jiec.2018.06.005.
20. Sharma, A.; Das, J. Small Molecules Derived Carbon Dots: Synthesis and Applications in Sensing, Catalysis, Imaging, and Biomedicine. J Nanobiotechnology 2019, 17 (1), 1–24. https://doi.org/10.1186/s12951-019-0525-8.
21. Sha, Y.; Lou, J.; Bai, S.; Wu, D.; Liu, B.; Ling, Y. Hydrothermal Synthesis of Nitrogen-Containing Carbon Nanodots as the High-Efficient Sensor for Copper(II) Ions. Mater Res Bull 2013, 48 (4), 1728–1731. https://doi.org/10.1016/j.materresbull.2012.12.010.
22. Qin, X.; Lu, W.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. Microwave-Assisted Rapid Green Synthesis of Photoluminescent Carbon Nanodots from Flour and Their Applications for Sensitive and Selective Detection of Mercury(II) Ions. Sens Actuators B Chem 2013, 184, 156–162. https://doi.org/10.1016/j.snb.2013.04.079.
23. Li, X.; Zhang, S.; Kulinich, S. A.; Liu, Y.; Zeng, H. Engineering Surface States of Carbon Dots to Achieve Controllable Luminescence for Solid-Luminescent Composites and Sensitive Be2+ Detection. Sci Rep 2014, 4, 1–8. https://doi.org/10.1038/srep04976.
24. Ngara, Z. S.; Refli; Pingak, R. K.; Bukit, M.; Bernandus; Tarigan, J.; Lerrick, R. I. Characterization and Application of Fluorescent Carbon Nanodots from Dragon Fruit Peel as Probes for Detection of Metal Ions. Results Chem 2025, 17, 102522–102527. https://doi.org/10.1016/j.rechem.2025.102522.
25. Liu, Y.; Zhao, Y.; Zhang, Y. One-Step Green Synthesized Fluorescent Carbon Nanodots from Bamboo Leaves for Copper(II) Ion Detection. Sens Actuators B Chem 2014, 196, 647–652. https://doi.org/10.1016/j.snb.2014.02.053.
26. Patir, K. Synthesis of Fluorescent Carbon Nanoparticles and Selective Detection of Fe 3 + in Tap Water. IJSRST 2018, 4 (5), 731–733.
27. Li, H.; He, X.; Liu, Y.; Huang, H.; Lian, S.; Lee, S. T.; Kang, Z. One-Step Ultrasonic Synthesis of Water-Soluble Carbon Nanoparticles with Excellent Photoluminescent Properties. ScienceDirect 2011, 49 (2), 605–609. https://doi.org/10.1016/j.carbon.2010.10.004.
28. Li, C. L.; Ou, C. M.; Huang, C. C.; Wu, W. C.; Chen, Y. P.; Lin, T. E.; Ho, L. C.; Wang, C. W.; Shih, C. C.; Zhou, H. C.; Lee, Y. C.; Tzeng, W. F.; Chiou, T. J.; Chu, S. T.; Cang, J.; Chang, H. T. Carbon Dots Prepared from Ginger Exhibiting Efficient Inhibition of Human Hepatocellular Carcinoma Cells. J Mater Chem B 2014, 2 (28), 4564–4571. https://doi.org/10.1039/c4tb00216d.
29. Basu, A.; Suryawanshi, A.; Kumawat, B.; Dandia, A.; Guin, D.; Ogale, S. B. Starch (Tapioca) to Carbon Dots: An Efficient Green Approach to an on-off-on Photoluminescence Probe for Fluoride Ion Sensing. Analyst 2015, 140 (6), 1837–1841. https://doi.org/10.1039/c4an02340d.
30. Rosanoff, A. The High Heart Health Value of Drinking-Water Magnesium. Med Hypotheses 2013, 81 (6), 1063–1065. https://doi.org/10.1016/j.mehy.2013.10.003.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Zakarias Seba Ngara, Anastasia Mamut, Redi Kristian Pingak, Albert Zicko Johannes, Reinner Ishaq Lerrick, Refli Refli

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.