Natural Zeolite as Mo and MoP Catalysts Support for Catalytic Deoxygenation of Jatropha Oil

Authors

  • Isalmi Aziz Department of Chemistry, Faculty of Science and Technology, Syarif Hidayatullah State Islamic University Jakarta
  • Muhammad Farhan Department of Chemistry, Faculty of Science and Technology, Syarif Hidayatullah State Islamic University Jakarta
  • Nanda Saridewi Department of Chemistry Education, Faculty of Tarbiya and Teaching Sciences, Syarif Hidayatullah State Islamic University Jakarta
  • Yulyani Nur Azizah Department of Chemistry, Faculty of Science and Technology, Syarif Hidayatullah State Islamic University Jakarta
  • Anna Muawanah Department of Chemistry, Faculty of Science and Technology, Syarif Hidayatullah State Islamic University Jakarta
  • Siti Nurbayti Department of Chemistry, Faculty of Science and Technology, Syarif Hidayatullah State Islamic University Jakarta
  • Adid Adep Dwiatmoko Research Center for Advanced Chemistry, National Research and Innovation Agency (BRIN)
  • Lisa Adhani Department of Chemical Engineering, Faculty of Engineering, Universitas Bhayangkara Jakarta Raya

DOI:

https://doi.org/10.15408/jkv.v11i1.45272

Keywords:

Catalytic deoxygenation, green diesel, jatropha oil, natural zeolite

Abstract

Non-edible oil, such as Jatropha oil, is an interesting feedstock for the development of renewable diesel (green diesel). Catalytic deoxygenation using natural zeolite-supported Mo-based catalysts is a promising process for the conversion of Jatropha oil to green diesel. Mo and MoP catalysts supported on natural zeolite were synthesized by wet impregnation at a concentration of 5% (w/w). The catalysts were characterized by XRD, XRF, SAA and NH3-TPD. The catalysts were successfully synthesized with the appearance of Mo and MoP peaks on the catalyst diffractogram. XRF results also showed that Mo and P were present in the catalyst. Metal impregnation decreased the surface area and pore volume of the catalyst, but increased the average pore diameter. The NH3-TPD profile of the catalyst showed that the weak acid sites of both catalysts were larger than the strong acid sites. Based on the activity test of catalytic deoxygenation of Jatropha oil, the MoP/HZ catalyst produced a higher conversion (67%) and liquid product yield (79%) than Mo/HZ. This is associated with a larger pore diameter, so that the distribution of reactants on the catalyst surface is more optimal. However, the highest green diesel selectivity of 82% is produced by the Mo/HZ catalyst. The Mo/HZ catalyst is more oriented towards the HDO reaction, whereas the MoP/HZ catalyst is more oriented towards the DCO/DCO2 reaction.

Downloads

Download data is not yet available.

References

1. Hartanto RR, Ginting PGI, Adriawan AM, Novizar A, Patik D, Aryani D. Statistik Minyak Dan Gas Bumi 2023.; 2023.

2. Ruatpuia JVL, Halder G, Vanlalchhandama M, et al. Jatropha curcas oil a potential feedstock for biodiesel production: A critical review. Fuel. 2024;370(January):131829. doi:10.1016/j.fuel.2024.131829

3. Siregar YDI, Riyadhi A, Damayanti WA, Rizkiansyah, Murditya MB. Production of Bio hydrocarbons from Vegetable Oils and Animal Fats Using Magnesium Oxide as Catalyst. J Kim Val. 2023;9(2):195-205. doi:10.15408/jkv.v9i2.30865

4. Rasyid R, Prasetyo D, Fitriani N, Syarif T. Catalytic Cracking of Palm Fatty Acid Distillate with NaOH and KOH Catalyst Supported by Gamma Alumina. Int J Technol. 2024;15(3):770-779. doi:10.14716/ijtech.v15i3.5980

5. Dewanti AT, Rasyid R, Kalla R. Effect of HCl/γ-Al2O3 and HCl/Ni/γ-Al2O3 Catalyst on The Cracking of Palm Oil. J Kim Val. 2022;8(2):190-198. doi:10.15408/jkv.v8i2.25774

6. Kordulis C, Bourikas K, Gousi M, Kordouli E, Lycourghiotis A. Development of nickel based catalysts for the transformation of natural triglycerides and related compounds into green diesel: A critical review. Appl Catal B Environ. 2016;181:156-196. doi:10.1016/j.apcatb.2015.07.042

7. Kamaruzaman MF, Taufiq-Yap YH, Derawi D. Green diesel production from palm fatty acid distillate over SBA-15-supported nickel, cobalt, and nickel/cobalt catalysts. Biomass and Bioenergy. 2020;134(January):105476. doi:10.1016/j.biombioe.2020.105476

8. Aziz I, Sugita P, Darmawan N, Dwiatmoko AA, Rustyawan W. Green diesel synthesis from palm fatty acid distillate using a nickel phosphide catalyst: Optimization by box behnken design. Bioresour Technol Reports. 2024;27(June):101897. doi:10.1016/j.biteb.2024.101897

9. Zhang F, Tian XF, Fang Z, Shah M, Wang YT, Jiang W, Yao M. Catalytic production of Jatropha biodiesel and hydrogen with magnetic carbonaceous acid and base synthesized from Jatropha hulls. Energy Convers Manag. 2017;142:107-116. doi:10.1016/j.enconman.2017.03.026

10. Aziz I, Kurnianti Y, Saridewi N, Adhani L, Permata W. Utilization of Coconut Shell as Cr2O3 Catalyst Support for Catalytic Cracking of Jatropha Oil into Biofuel. J Kim Sains dan Apl. 2020;23(2):39-45. doi:10.14710/jksa.23.2.39-45

11. del Río JI, Cardeño F, Pérez W, Peña JD, Rios LA. Catalytic hydrotreating of jatropha oil into non-isomerized renewable diesel: Effect of catalyst type and process conditions. Chem Eng J. 2018;352(July):232-240. doi:10.1016/j.cej.2018.07.021

12. Vázquez-Garrido I, López-Benítez A, Guevara-Lara A, Berhault G. Synthesis of NiMo catalysts supported on Mn-Al2O3 for obtaining green diesel from waste soybean oil. Catal Today. 2021;365(May 2020):327-340. doi:10.1016/j.cattod.2020.06.001

13. Du X, Liang W, Hao X, Zhou K, Yang H, Lei X, Li D, Hu C. The effect of support on nickel phosphide catalysts for one-pot conversion of jatropha oil into high grade hydrocarbons. Catal Today. 2021;367(November 2019):83-94. doi:10.1016/j.cattod.2020.06.089

14. Tan Q, Cao Y, Li J. Prepared multifunctional catalyst Ni2P/Zr-SBA-15 and catalyzed Jatropha Oil to produce bio-aviation fuel. Renew Energy. 2020;150:370-381. doi:10.1016/j.renene.2019.12.029

15. Asikin-Mijan N, Lee H V., Abdulkareem-Alsultan G, Afandi A, Taufiq-Yap YH. Production of green diesel via cleaner catalytic deoxygenation of Jatropha curcas oil. J Clean Prod. 2017;167:1048-1059. doi:10.1016/j.jclepro.2016.10.023

16. Ramesh A, Palanichamy K, Tamizhdurai P, Umasankar S, Sureshkumar K, Shanthi K. Sulphated Zr–Al2O3 catalysts through jatropha oil to green-diesel production. Mater Lett. 2019;238(December):62-65. doi:10.1016/j.matlet.2018.11.158

17. Du X, Zhou K, Zhou L, Lei X, Yang H, Li D, Hu C. Efficient catalytic conversion of jatropha oil to high grade biofuel on Ni-Mo2C/MCM-41 catalysts with tuned surface properties. J Energy Chem. 2021;61:425-435. doi:10.1016/j.jechem.2021.02.006

18. Fauzi RA, Tursiloadi S, Dwiatmoko AA, Sukandar D, Aulia F, Rinaldi N, Sudiyarmanto. Performance of Modified Natural Zeolites by Sodium Hydroxide Treatments in The Esterification of Glycerol and Oleic Acid. J Kim Val. 2019;5(2):236-241. doi:10.15408/jkv.v5i2.9976

19. Kurniawan AA, Rustyawan W, Ibadurrohman M. Performance Test of Various Indonesian Natural Zeolites as Composite Components of NiMo / Al2O3-Zeolite Catalysts for Hydrocracking Used Cooking Oil into Biohydrocarbons. Bull Chem React Eng & Catal. 2025;20(1):99-108. doi:10.9767/bcrec.20254

20. Putra R, Lestari WW, Wibowo FR, Susanto BH. Fe/Indonesian natural zeolite as hydrodeoxygenation catalyst in green diesel production from palm oil. Bull Chem React Eng & Catal. 2018;13(x):245-255. doi:10.9767/bcrec.13.2.1382.245-255

21. Chintakanan P, Vitidsant T, Reubroycharoen P, Kuchonthara P, Kida T, Hinchiranan N. Bio-jet fuel range in biofuels derived from hydroconversion of palm olein over Ni/zeolite catalysts and freezing point of biofuels/Jet A-1 blends. Fuel. 2021;293(February):120472. doi:10.1016/j.fuel.2021.120472

22. Aziz I, Sugita P, Darmawan N, Adep A. Hydrodeoxygenation of palm fatty acid distillate ( PFAD ) over natural zeolite-supported nickel phosphide catalyst : Insight into Ni/P effect. Case Stud Chem Environ Eng. 2024;9(September 2023):100571. doi:10.1016/j.cscee.2023.100571

23. da Silva Neto AV, Leite ER, da Silva VT, Zotin JL, Urquieta-González EA. NiMoS HDS catalysts – The effect of the Ti and Zr incorporation into the silica support and of the catalyst preparation methodology on the orientation and activity of the formed MoS2 slabs. Appl Catal A Gen. 2016;528:74-85. doi:10.1016/j.apcata.2016.09.019

24. Gutiérrez OY, Singh S, Schachtl E, Kim J, Kondratieva E, Hein J, Lercher JA. Effects of the support on the performance and promotion of (Ni)MoS 2 catalysts for simultaneous hydrodenitrogenation and hydrodesulfurization. ACS Catal. 2014;4(5):1487-1499. doi:10.1021/cs500034d

25. Pelardy F, Daudin A, Devers E, Dupont C, Raybaud P, Brunet S. Deep HDS of FCC gasoline over alumina supported CoMoS catalyst: Inhibiting effects of carbon monoxide and water. Appl Catal B Environ. 2016;183:317-327. doi:10.1016/j.apcatb.2015.10.026

26. Li K, Wang R, Chen J. Hydrodeoxygenation of anisole over silica-supported Ni2P, MoP, and NiMoP catalysts. Energy and Fuels. 2011;25(3):854-863. doi:10.1021/ef101258j

27. Dwiratna B, Soebagjo S. Pengembangan Katalis Berbasis NiMo Alumina untuk Reaksi HidrodeoksigenasiMinyak nabati menjadi Bioavtur. J Energi dan Lingkung. 2015;11(2):75-80. doi:10.29122/elk.v11i2.1580

28. Hidayah N, Wijayati N, Mursiti S. Aktivitas Katalitik P2O5-Zeolit Alam pada Reaksi Hidrasi Terpentin menjadi α-Terpineol. Indones J Chem Sci. 2017;6(3):236-242.

29. Golubeva MA, Zakharyan EM, Maximov AL. Transition Metal Phosphides (Ni, Co, Mo, W) for Hydrodeoxygenation of Biorefinery Products (a Review). Pet Chem. 2020;60(10):1109-1128. doi:10.1134/S0965544120100047

30. Lu M, Zheng L, Li R, Guan Q, Li W. Efficient hydrogenation performance improvement of MoP and Ni2P catalysts by adjusting the electron distribution around Mo and Ni atoms. RSC Adv. 2016;6(69):65081-65088. doi:10.1039/c6ra09862b

31. Alvarez-galvan MC, Blanco-brieva G, Capel-sanchez M, Morales-delarosa S, Campos-martin JM, Fierro JLG. Metal phosphide catalysts for the hydrotreatment of non-edible vegetable oils. Catal Today. 2017;(March):0-1. doi:10.1016/j.cattod.2017.03.031

32. Xiao W, Wang F, Xiao G. Performance of hierarchical HZSM-5 Zeolites Prepared by NaOH Treatments in the Aromatization of Glycerol. R Soc Chem. Published online 2015. doi:10.1039/b000000x

33. Lee CW, Lin PY, Chen BH, Kukushkin RG, Yakovlev VA. Hydrodeoxygenation of palmitic acid over zeolite-supported nickel catalysts. Catal Today. 2021;379(May 2020):124-131. doi:10.1016/j.cattod.2020.05.013

34. Guo C, Rao KTV, Yuan Z, He S (Quan), Rohani S, Xu C (Charles). Hydrodeoxygenation of fast pyrolysis oil with novel activated carbon-supported NiP and CoP catalysts. Chem Eng Sci. 2018;178:248-259. doi:10.1016/j.ces.2017.12.048

35. Aziz I, Sugita P, Darmawan N, Adep A. Effect of desilication process on natural zeolite as Ni catalyst support on hydrodeoxygenation of palm fatty acid distillate ( PFAD ) into green diesel. South African J Chem Eng. 2023;45(July):328-338. doi:10.1016/j.sajce.2023.07.002

36. Usman M, Li D, Razzaq R, Yaseen M, Li C, Zhang S. Novel MoP/HY catalyst for the selective conversion of naphthalene to tetralin. J Ind Eng Chem. 2015;23:21-26. doi:10.1016/j.jiec.2014.08.033

37. Nie Z, Zhang Z, Chen J. Effect of Ni and noble metals (Ru, Pd and Pt) on performance of bifunctional MoP/SiO 2 for hydroconversion of methyl laurate. Appl Surf Sci. 2017;420:511-522. doi:10.1016/j.apsusc.2017.05.173

38. Chang H, Lee HV, Taufiq-Yap YH, Abdulkareem-Alsultan G, Seenivasagam S. Metal organic framework-derived advanced porous material supported catalysts for green diesel production from palm fatty acid distillate via deoxygenation pathways. Renew Energy. 2025;238:121882. doi:https://doi.org/10.1016/j.renene.2024.121882

39. Liu X, Chen J, Zhang J. Hydrodechlorination of chlorobenzene over silica-supported nickel phosphide catalysts. Ind Eng Chem Res. 2008;47(15):5362-5368. doi:10.1021/ie7017542

40. Gamal MS, Asikin-Mijan N, Khalit WNAW, Arumugam M, Izham SM, Taufiq-Yap YH. Effective catalytic deoxygenation of palm fatty acid distillate for green diesel production under hydrogen-free atmosphere over bimetallic catalyst CoMo supported on activated carbon. Fuel Process Technol. 2020;208(July). doi:10.1016/j.fuproc.2020.106519

41. Wang Z, Dornath P, Chang CC, Chen H, Fan W. Confined Synthesis of Three-Dimensionally Ordered Mesoporous-Imprinted Zeolites with Tunable Morphology and Si/Al Ratio. Microporous Mesoporous Mater. 2013;181:8-16. doi:10.1016/j.micromeso.2013.07.010

42. Aziz I, Adhani L, Maulana MI, Marwono MA, Dwiatmoko AA, Nurbayti S. Conversion of Nyamplung Oil into Green Diesel through Catalytic Deoxygenation using NiAg/ZH Catalyst. J Kim Val. 2022;8(2):240-250. doi:10.15408/jkv.v8i2.25943

43. Zarchin R, Rabaev M, Vidruk-Nehemya R, Landau M V., Herskowitz M. Hydroprocessing of soybean oil on nickel-phosphide supported catalysts. Fuel. 2015;139:684-691. doi:10.1016/j.fuel.2014.09.053

44. Chen L, Janssens TVW, Skoglundh M, Grönbeck H. Interpretation of NH3-TPD Profiles from Cu-CHA Using First-Principles Calculations. Top Catal. 2019;62(1-4):93-99. doi:10.1007/s11244-018-1095-y

45. Luo N, Cao Y, Li J, Guo W, Zhao ZW. Preparation of Ni2P/Zr-MCM-41 catalyst and its performance in the hydrodeoxygenation of Jatropha curcas oil. Ranliao Huaxue Xuebao/Journal Fuel Chem Technol. 2016;44(1):76-83. doi:10.1016/s1872-5813(16)30007-x

46. Ruangudomsakul M, Osakoo N, Wittayakun J, Keawkumay C, Butburee T, Youngjan S, Faungnawakij K, Poo-arporn Y, Kidkhunthod P, Khemthong P. Hydrodeoxygenation of palm oil to green diesel products on mixed-phase nickel phosphides. Mol Catal. 2022;523(May):111422. doi:10.1016/j.mcat.2021.111422

Downloads

Published

17-06-2025

Issue

Section

Jurnal Kimia VALENSI, Volume 11, No. 1, May 2025

How to Cite

Natural Zeolite as Mo and MoP Catalysts Support for Catalytic Deoxygenation of Jatropha Oil. (2025). Jurnal Kimia Valensi, 11(1), 116-125. https://doi.org/10.15408/jkv.v11i1.45272