Unraveling the Influence of Type and Position Heteroatoms (N, O, S) on Asphaltene Aggregation Patterns
DOI:
https://doi.org/10.15408/jkv.v11i2.44934Keywords:
Asphaltene aggregation, heteroatom, hydrogen bonding, parallel offset, π-π interactionsAbstract
Asphaltenes, the heaviest fraction in petroleum and coal, are composed of polycyclic aromatic hydrocarbons (PAHs) with aliphatic side chains and heteroatoms (N, O, S). Previous studies have shown that these heteroatoms have a significant influence asphaltene aggregation. This study investigates the impact of heteroatom position and type, as well as solvent, on asphaltene aggregation behavior by employing molecular dynamics simulations of modified CA21 asphaltene. Simulations were conducted using GROMACS 2024.3. Analysis of simulation trajectories revealed that in water, all asphaltene models exhibited asphaltene-asphaltene radial distribution functions (RDFs) below 1 nm, indicating predominantly parallel or parallel-offset π-π interactions. In contrast, asphaltenes with an oxygen heteroatom at the end of the aliphatic chain when dissolved in hexane and toluene solvents, displayed unique shape aggregation, attributed to hydrogen bonding between the terminal oxygen atoms. The presence of heteroatoms within the aliphatic chain generally slowed aggregation, with the observed order of aggregation rates being S > N > O.
Downloads
References
1. Gharbi K, Benamara C, Benyounes K, Kelland MA. Toward Separation and Characterization of Asphaltene Acid and Base Fractions. Energy & Fuels. 2021;35(18):14610-14617. doi:10.1021/acs.energyfuels.1c01999
2. Yaseen S, Mansoori GA. Molecular dynamics studies of interaction between asphaltenes and solvents. J Pet Sci Eng. 2017;156:118-124. doi:10.1016/j.petrol.2017.05.018
3. Essentials of Flow Assurance Solids in Oil and Gas Operations. Elsevier; 2023. doi:10.1016/C2021-0-00361-8
4. Acevedo S, Castillo J. Asphaltenes: Aggregates in Terms of A1 and A2 or Island and Archipielago Structures. ACS Omega. 2023;8(5):4453-4471. doi:10.1021/acsomega.2c06362
5. Liu J, Zhao Y, Ren S. Molecular Dynamics Simulation of Self-Aggregation of Asphaltenes at an Oil/Water Interface: Formation and Destruction of the Asphaltene Protective Film. Energy & Fuels. 2015;29(2):1233-1242. doi:10.1021/ef5019737
6. He L, Lin F, Li X, Sui H, Xu Z. Interfcial sciences in unconventional petroleum production: from fundamentals to applications. Chem Soc Rev. 2015;44(15):5446-5494. doi:10.1039/C5CS00102A
7. Moud AA. Asphaltene induced changes in rheological properties: A review. Fuel. 2022;316:123372. doi:10.1016/j.fuel.2022.123372
8. Zhang J, Wei Q, Zhu B, et al. Asphaltene aggregation and deposition in pipeline: Insight from multiscale simulation. Colloids Surf A Physicochem Eng Asp. 2022;649:129394. doi:10.1016/j.colsurfa.2022.129394
9. Moncayo-Riascos I, De Leon J, Garcia-Martinez JA, Garcia-Cruz I, Lira-Galeana C. Multiscale simulation of asphaltene deposition in pipeline flows. J Pet Sci Eng. 2019;183:106376. doi:10.1016/j.petrol.2019.106376
10. Alhosani A, Daraboina N. Unified Model to Predict Asphaltene Deposition in Production Pipelines. Energy & Fuels. 2020;34(2):1720-1727. doi:10.1021/acs.energyfuels.9b04287
11. Gabrienko AA, Morozov E V., Subramani V, Martyanov ON, Kazarian SG. Chemical Visualization of Asphaltenes Aggregation Processes Studied in Situ with ATR-FTIR Spectroscopic Imaging and NMR Imaging. The Journal of Physical Chemistry C. 2015;119(5):2646-2660. doi:10.1021/jp511891f
12. Mizuhara J, Liang Y, Masuda Y, Kobayashi K, Iwama H, Yonebayashi H. Evaluation of Asphaltene Adsorption Free Energy at the Oil–Water Interface: Role of Heteroatoms. Energy & Fuels. 2020;34(5):5267-5280. doi:10.1021/acs.energyfuels.9b03864
13. Bai Y, Sui H, Liu X, He L, Li X, Thormann E. Effects of the N, O, and S heteroatoms on the adsorption and desorption of asphaltenes on silica surface: A molecular dynamics simulation. Fuel. 2019;240:252-261. doi:10.1016/j.fuel.2018.11.135
14. Ramírez L, Moncayo-Riascos I, Cortés FB, Franco CA, Ribadeneira R. Molecular Dynamics Study of the Aggregation Behavior of Polycyclic Aromatic Hydrocarbon Molecules in n -Heptane–Toluene Mixtures: Assessing the Heteroatom Content Effect. Energy & Fuels. 2021;35(4):3119-3129. doi:10.1021/acs.energyfuels.0c04153
15. Ekramipooya A, Valadi FM, Farisabadi A, Gholami MR. Effect of the heteroatom presence in different positions of the model asphaltene structure on the self-aggregation: MD and DFT study. J Mol Liq. 2021;334:116109. doi:10.1016/j.molliq.2021.116109
16. Schuler B, Meyer G, Peña D, Mullins OC, Gross L. Unraveling the Molecular Structures of Asphaltenes by Atomic Force Microscopy. J Am Chem Soc. 2015;137(31):9870-9876. doi:10.1021/jacs.5b04056
17. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012;4(1):17. doi:10.1186/1758-2946-4-17
18. Stroet M, Caron B, Visscher KM, Geerke DP, Malde AK, Mark AE. Automated Topology Builder Version 3.0: Prediction of Solvation Free Enthalpies in Water and Hexane. J Chem Theory Comput. 2018;14(11):5834-5845. doi:10.1021/acs.jctc.8b00768
19. Huang W, Lin Z, van Gunsteren WF. Validation of the GROMOS 54A7 Force Field with Respect to β-Peptide Folding. J Chem Theory Comput. 2011;7(5):1237-1243. doi:10.1021/ct100747y
20. Abraham MJ, Murtola T, Schulz R, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19-25. doi:10.1016/j.softx.2015.06.001
21. Darden T, York D, Pedersen L. Particle mesh Ewald: An N ⋅log( N ) method for Ewald sums in large systems. J Chem Phys. 1993;98(12):10089-10092. doi:10.1063/1.464397
22. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry. J Comput Chem. 1998;18(12):10089-10092.
23. Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126(1). doi:10.1063/1.2408420
24. Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Phys. 1981;52(12):7182-7190. doi:10.1063/1.328693
25. Wang J, Ferguson AL. Mesoscale Simulation of Asphaltene Aggregation. J Phys Chem B. 2016;120(32):8016-8035. doi:10.1021/acs.jpcb.6b05925
26. Dickie JP, Yen TFu. Macrostructures of the asphaltic fractions by various instrumental methods. Anal Chem. 1967;39(14):1847-1852. doi:10.1021/ac50157a057
27. Frigerio F, Molinari D. A multiscale approach to the simulation of asphaltenes. Comput Theor Chem. 2011;975(1-3):76-82. doi:10.1016/j.comptc.2011.03.013
28. Kuznicki T, Masliyah JH, Bhattacharjee S. Molecular Dynamics Study of Model Molecules Resembling Asphaltene-Like Structures in Aqueous Organic Solvent Systems. Energy & Fuels. 2008;22(4):2379-2389. doi:10.1021/ef800057n
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mia Ledyastuti, Intan Maulidhian Aribowo, Muhammad Fahri Afiki

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.