Unraveling the Influence of Type and Position Heteroatoms (N, O, S) on Asphaltene Aggregation Patterns

Authors

  • Mia Ledyastuti Chemistry Department, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung
  • Intan Maulidhian Aribowo Chemistry Department, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung
  • Muhammad Fahri Afiki Chemistry Department, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung

DOI:

https://doi.org/10.15408/jkv.v11i2.44934

Keywords:

Asphaltene aggregation, heteroatom, hydrogen bonding, parallel offset, π-π interactions

Abstract

Asphaltenes, the heaviest fraction in petroleum and coal, are composed of polycyclic aromatic hydrocarbons (PAHs) with aliphatic side chains and heteroatoms (N, O, S). Previous studies have shown that these heteroatoms have a significant influence asphaltene aggregation. This study investigates the impact of heteroatom position and type, as well as solvent, on asphaltene aggregation behavior by employing molecular dynamics simulations of modified CA21 asphaltene. Simulations were conducted using GROMACS 2024.3. Analysis of simulation trajectories revealed that in water, all asphaltene models exhibited asphaltene-asphaltene radial distribution functions (RDFs) below 1 nm, indicating predominantly parallel or parallel-offset π-π interactions. In contrast, asphaltenes with an oxygen heteroatom at the end of the aliphatic chain when dissolved in hexane and toluene solvents, displayed unique shape aggregation, attributed to hydrogen bonding between the terminal oxygen atoms. The presence of heteroatoms within the aliphatic chain generally slowed aggregation, with the observed order of aggregation rates being S > N > O.

Downloads

Download data is not yet available.

References

1. Gharbi K, Benamara C, Benyounes K, Kelland MA. Toward Separation and Characterization of Asphaltene Acid and Base Fractions. Energy & Fuels. 2021;35(18):14610-14617. doi:10.1021/acs.energyfuels.1c01999

2. Yaseen S, Mansoori GA. Molecular dynamics studies of interaction between asphaltenes and solvents. J Pet Sci Eng. 2017;156:118-124. doi:10.1016/j.petrol.2017.05.018

3. Essentials of Flow Assurance Solids in Oil and Gas Operations. Elsevier; 2023. doi:10.1016/C2021-0-00361-8

4. Acevedo S, Castillo J. Asphaltenes: Aggregates in Terms of A1 and A2 or Island and Archipielago Structures. ACS Omega. 2023;8(5):4453-4471. doi:10.1021/acsomega.2c06362

5. Liu J, Zhao Y, Ren S. Molecular Dynamics Simulation of Self-Aggregation of Asphaltenes at an Oil/Water Interface: Formation and Destruction of the Asphaltene Protective Film. Energy & Fuels. 2015;29(2):1233-1242. doi:10.1021/ef5019737

6. He L, Lin F, Li X, Sui H, Xu Z. Interfcial sciences in unconventional petroleum production: from fundamentals to applications. Chem Soc Rev. 2015;44(15):5446-5494. doi:10.1039/C5CS00102A

7. Moud AA. Asphaltene induced changes in rheological properties: A review. Fuel. 2022;316:123372. doi:10.1016/j.fuel.2022.123372

8. Zhang J, Wei Q, Zhu B, et al. Asphaltene aggregation and deposition in pipeline: Insight from multiscale simulation. Colloids Surf A Physicochem Eng Asp. 2022;649:129394. doi:10.1016/j.colsurfa.2022.129394

9. Moncayo-Riascos I, De Leon J, Garcia-Martinez JA, Garcia-Cruz I, Lira-Galeana C. Multiscale simulation of asphaltene deposition in pipeline flows. J Pet Sci Eng. 2019;183:106376. doi:10.1016/j.petrol.2019.106376

10. Alhosani A, Daraboina N. Unified Model to Predict Asphaltene Deposition in Production Pipelines. Energy & Fuels. 2020;34(2):1720-1727. doi:10.1021/acs.energyfuels.9b04287

11. Gabrienko AA, Morozov E V., Subramani V, Martyanov ON, Kazarian SG. Chemical Visualization of Asphaltenes Aggregation Processes Studied in Situ with ATR-FTIR Spectroscopic Imaging and NMR Imaging. The Journal of Physical Chemistry C. 2015;119(5):2646-2660. doi:10.1021/jp511891f

12. Mizuhara J, Liang Y, Masuda Y, Kobayashi K, Iwama H, Yonebayashi H. Evaluation of Asphaltene Adsorption Free Energy at the Oil–Water Interface: Role of Heteroatoms. Energy & Fuels. 2020;34(5):5267-5280. doi:10.1021/acs.energyfuels.9b03864

13. Bai Y, Sui H, Liu X, He L, Li X, Thormann E. Effects of the N, O, and S heteroatoms on the adsorption and desorption of asphaltenes on silica surface: A molecular dynamics simulation. Fuel. 2019;240:252-261. doi:10.1016/j.fuel.2018.11.135

14. Ramírez L, Moncayo-Riascos I, Cortés FB, Franco CA, Ribadeneira R. Molecular Dynamics Study of the Aggregation Behavior of Polycyclic Aromatic Hydrocarbon Molecules in n -Heptane–Toluene Mixtures: Assessing the Heteroatom Content Effect. Energy & Fuels. 2021;35(4):3119-3129. doi:10.1021/acs.energyfuels.0c04153

15. Ekramipooya A, Valadi FM, Farisabadi A, Gholami MR. Effect of the heteroatom presence in different positions of the model asphaltene structure on the self-aggregation: MD and DFT study. J Mol Liq. 2021;334:116109. doi:10.1016/j.molliq.2021.116109

16. Schuler B, Meyer G, Peña D, Mullins OC, Gross L. Unraveling the Molecular Structures of Asphaltenes by Atomic Force Microscopy. J Am Chem Soc. 2015;137(31):9870-9876. doi:10.1021/jacs.5b04056

17. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012;4(1):17. doi:10.1186/1758-2946-4-17

18. Stroet M, Caron B, Visscher KM, Geerke DP, Malde AK, Mark AE. Automated Topology Builder Version 3.0: Prediction of Solvation Free Enthalpies in Water and Hexane. J Chem Theory Comput. 2018;14(11):5834-5845. doi:10.1021/acs.jctc.8b00768

19. Huang W, Lin Z, van Gunsteren WF. Validation of the GROMOS 54A7 Force Field with Respect to β-Peptide Folding. J Chem Theory Comput. 2011;7(5):1237-1243. doi:10.1021/ct100747y

20. Abraham MJ, Murtola T, Schulz R, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19-25. doi:10.1016/j.softx.2015.06.001

21. Darden T, York D, Pedersen L. Particle mesh Ewald: An N ⋅log( N ) method for Ewald sums in large systems. J Chem Phys. 1993;98(12):10089-10092. doi:10.1063/1.464397

22. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry. J Comput Chem. 1998;18(12):10089-10092.

23. Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126(1). doi:10.1063/1.2408420

24. Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Phys. 1981;52(12):7182-7190. doi:10.1063/1.328693

25. Wang J, Ferguson AL. Mesoscale Simulation of Asphaltene Aggregation. J Phys Chem B. 2016;120(32):8016-8035. doi:10.1021/acs.jpcb.6b05925

26. Dickie JP, Yen TFu. Macrostructures of the asphaltic fractions by various instrumental methods. Anal Chem. 1967;39(14):1847-1852. doi:10.1021/ac50157a057

27. Frigerio F, Molinari D. A multiscale approach to the simulation of asphaltenes. Comput Theor Chem. 2011;975(1-3):76-82. doi:10.1016/j.comptc.2011.03.013

28. Kuznicki T, Masliyah JH, Bhattacharjee S. Molecular Dynamics Study of Model Molecules Resembling Asphaltene-Like Structures in Aqueous Organic Solvent Systems. Energy & Fuels. 2008;22(4):2379-2389. doi:10.1021/ef800057n

Downloads

Published

22-12-2025

Issue

Section

Jurnal Kimia VALENSI, Volume 11, No. 2, November 2025

How to Cite

Unraveling the Influence of Type and Position Heteroatoms (N, O, S) on Asphaltene Aggregation Patterns. (2025). Jurnal Kimia Valensi, 11(2), 291-299. https://doi.org/10.15408/jkv.v11i2.44934