Halal Authentication and Metabolite Mapping of Kombucha Products via Gas Chromatography-Mass Spectrometry (GC-MS) and Chemometric Analysis

Authors

  • Sandra Hermanto Chemistry Department, Faculty of Science and Technology Syarif Hidayatullah Jakarta State Islamic University https://orcid.org/0000-0003-0184-2018
  • Della Arginia Chemistry Department, Faculty of Science and Technology Syarif Hidayatullah Jakarta State Islamic University
  • Mabrurotul Mustafidah Pharmacy Department, Faculty of Health Sciences Syarif Hidayatullah Jakarta State Islamic University
  • Ahmad Fathoni Graduate School of Agricultural Science, Tohoku University

DOI:

https://doi.org/10.15408/jkv.v11i2.44602

Keywords:

Chemometric, ethanol, GC-MS, kombucha, metabolite profile

Abstract

The presence of ethanol in fermented beverages is a critical factor in the halal certification process. One of the key parameters for verifying the halal status of such products is the quantification of ethanol content. Kombucha tea, a fermented beverage produced from sugared tea and a Symbiotic Culture of Bacteria and Yeast (SCOBY), naturally contains ethanol as a byproduct of fermentation. This study aims to determine the ethanol content and differentiate the metabolite profiles of kombucha tea using a non-targeted metabolomics approach, based on variations in tea type, storage temperature, and duration. Ethanol levels were measured by gas chromatography, and metabolite profiling was conducted by gas chromatography–Mass Spectrometry (GC-MS), followed by Principal Component Analysis (PCA) to visualize compositional differences and identify characteristic compounds. The results indicated that tea type significantly influenced ethanol production. The ethanol content of kombucha prepared with black tea, green tea, and white tea was 0.1126% w/w ± 0.0003 v/v, 0.1708% w/w ± 0.0053 v/v, and 0.1301% w/w ± 0.0043 v/v, respectively. Green tea kombucha, which exhibited the highest ethanol content, was selected for storage analysis. During storage, ethanol levels increased slightly to 0.1789% w/w ± 0.0008 v/v in the first week, followed by a gradual decline to 0.1478% w/w ± 0.0071 v/v by the fourth week. Metabolomic profiling revealed distinct differences in secondary metabolite composition among the three tea variants, as evidenced by non-overlapping PCA groupings. Key discriminant compounds identified included ethyl acetate, ethyl octanoate, ethylamine, and (E)-2-decenal, which are proposed as characteristic markers for kombucha derived from black, green, and white teas. These findings contribute to understanding kombucha’s biochemical diversity and support halal verification through ethanol quantification and metabolite-based authentication.

Downloads

Download data is not yet available.

References

1. Standards and Metrology Institute for Islamic Countries (SMIIC). OIC/SMIIC 1:2019 – General Requirements for Halal Food. 2nd ed. Istanbul (TR): Organisation of Islamic Cooperation; 2019.

2. Majelis Ulama Indonesia. (MUI). Fatwa No. 10 of 2018 on Food and Beverage Containing Alcohol. Jakarta: MUI; 2018.

3. Arfa Yanti N, Ambardini S, Ode Leni Marlina W, Dwi Cahyanti Jurusan Biologi FMIPA Universitas Halu Oleo Kampus Hijau Bumi Tridharma K, Kendari Sulawesi Tenggara A, Korespondensi P. Aktivitas Antibakteri Kombucha Daun Sirsak (Annona muricata L.) Dengan Konsentrasi Gula Berbeda (Antibacterial Activity of Soursoup Leaves Kombucha (Annona muricata L.) With Different Sugar Concentration).

4. Chou YC, Lin HW, Wang CY, Hsieh CC, Santoso SP, Lin SP, et al. Enhancing Antioxidant Benefits of Kombucha Through Optimized Glucuronic Acid by Selected Symbiotic Fermentation Culture. Antioxidants. 2024 Nov 1;13(11).

5. Wang B, Rutherfurd-Markwick K, Zhang XX, Mutukumira AN. Kombucha: Production and Microbiological Research. Foods [Internet]. 2022;11(21). Available from: https://www.mdpi.com/2304-8158/11/21/3456

6. Khaerah A, Nawir N, Nurhilmi H, Abstrak N. Perbandingan Total Mikroba Kombucha dengan Variasi Jenis Teh dan Lama Fermentasi.

7. Tangapo AM, Veralyn Maabuat P, Kolondam B, Wahyudi L, Mambu SM, Pasassa M. Metabolite Profiling of Kombucha Fermented Beverage with Substrate Variation. J Bios Logos. 2025 Aug 29;15(2):163–73.

8. Jansen CA, Zanzarin DM, Março PH, Porto C, do Prado RM, Carvalhaes F, et al. Metabolomic kinetics investigation of Camellia sinensis kombucha using mass spectrometry and bioinformatics approaches. Heliyon. 2024 Apr 15;10(7).

9. Ramautar R. New Developments in Mass Spectrometry No. 6 Capillary Electrophoresis-Mass Spectrometry for Metabolomics Edited by Rawi Ramautar 1.1 Introduction Capillary Electrophoresis-Mass Spectrometry for Metabolomics-From Metabolite Analysis to Metabolic Profiling [Internet]. 2018. Available from: www.rsc.org

10. Farag MA, Mohamed TA, El-Hawary EA, Abdelwareth A. Metabolite Profiling of Premium Civet Luwak Bio-Transformed Coffee Compared with Conventional Coffee Types, as Analyzed Using Chemometric Tools. Metabolites. 2023 Feb 1;13(2).

11. Djeni TN, Kouame KH, Ake FDM, Amoikon LST, Dje MK, Jeyaram K. Microbial Diversity and Metabolite Profiles of Palm Wine Produced From Three Different Palm Tree Species in Côte d’Ivoire. Sci Rep [Internet]. 2020;10(1):1715. Available from: https://doi.org/10.1038/s41598-020-58587-2

12. Kim EJ, Park SE, Seo SH, Kweon OC, Son HS. A GC–MS based metabolic profiling of fermented tomato by lactic acid bacteria. Appl Biol Chem [Internet]. 2019;62(1):2. Available from: https://doi.org/10.1186/s13765-019-0418-4

13. Yoram Gerchman. A simple rapid gas-chromatography flame-ionization-detector (GC-FID) method for the determination of ethanol from fermentation processes. Afr J Biotechnol. 2012 Feb 21;11(15).

14. Kim EJ, Park SE, Seo SH, Kweon OC, Son HS. A GC–MS based metabolic profiling of fermented tomato by lactic acid bacteria. Applied Biological Chemistry. 2019;62(1).

15. Azzahra MF, Nofita, Tutik. Analisis Kehalalan Produk Pembersih Wajah Berdasarkan Kandungan Etanol Menggunakan Metode Kromatografi Gas. 2024;10(13):508–15.

16. Permatasari FI, Nazir N, Anggraini T, Hellyward J, Techavuthiporn C, Syukri D. GC-MS Metabolite Profiling and Chemometric Analysis of Robusta Green Beans (Bantjah Coffee). Journal of Global Innovations in Agricultural Sciences. 2025;13(3):919–24.

17. Purnami I.miK, Anom Jambe A, Wayan Wisaniyasa N, Jurusan Ilmu dan Teknologi Pangan M, Teknologi Pertanian F, Udayana U, et al. Pengaruh Jenis Teh Terhadap Karaktersitik Teh Kombucha. Vol. 7. 2018.

18. Santiago-Santiago RM, Michel MR, Rodríguez-Herrera R, Aguilar-Zárate P, Ascacio-Valdés JA, Flores-Gallegos AC. Symbiotic Culture of Bacteria and Yeast (SCOBY) in the Food Sector as a Source of Polysaccharides and Other Applications in the Food Sector. Polysaccharides [Internet]. 2025 Oct 21;6(4):97. Available from: https://www.mdpi.com/2673-4176/6/4/97

19. Abudureheman B, Yu X, Fang D, Zhang H. Enzymatic Oxidation of Tea Catechins and Its Mechanism. Vol. 27, Molecules. MDPI; 2022.

20. Kitwetcharoen H, Phung LT, Klanrit P, Thanonkeo S, Tippayawat P, Yamada M, et al. Kombucha Healthy Drink—Recent Advances in Production, Chemical Composition and Health Benefits. Vol. 9, Fermentation. MDPI; 2023.

21. Dutta H, Paul SK. Kombucha Drink: Production, Quality, and Safety Aspects. In 2019. p. 259–88.

22. MUI. Fatwa Majelis Ulama No10 Tahun 2018. 2019. Fatwa Majelis Ulama Indinesia No 10 Tahun 2018 tentang Makanan/Minuman yang mengandung Alkohol. Available from: https://mui.or.id/baca/fatwa/produk-makanan-dan-minuman-yang-mengandung-alkohol-etanol

23. Abstracts of the International Halal Science Conference 2023. Abstracts of the International Halal Science Conference 2023. AIJR Publisher; 2023.

24. Water Injections in Capillary GC “How Wet Can You Get?”

25. Meng Y, Wang X, Li Y, Chen J, Chen X. Microbial interactions and dynamic changes of volatile flavor compounds during the fermentation of traditional kombucha. Food Chem [Internet]. 2024;430:137060. Available from: https://www.sciencedirect.com/science/article/pii/S0308814623016783

26. Phung LT, Kitwetcharoen H, Chamnipa N, Boonchot N, Thanonkeo S, Tippayawat P, et al. Changes in the chemical compositions and biological properties of kombucha beverages made from black teas and pineapple peels and cores. Sci Rep [Internet]. 2023;13(1):7859. Available from: https://doi.org/10.1038/s41598-023-34954-7

27. Mozzon M, Rinaldi L, Ahmed AEM, Kovács B, Foligni R. Investigating the Volatiles of Kombucha During Storage Under Refrigerated Conditions. Beverages. 2025 Oct 1;11(5):143.

28. Iannone A, Di Fiore C, Carriera F, Avino P, Stillittano V. Phthalates: The Main Issue in Quality Control in the Beverage Industry. Vol. 11, Separations. Multidisciplinary Digital Publishing Institute (MDPI); 2024.

29. Hoang NMH, Park K. Applications of Tert-Butyl-Phenolic Antioxidants in Consumer Products and Their Potential Toxicities in Humans. Vol. 12, Toxics. Multidisciplinary Digital Publishing Institute (MDPI); 2024.

30. Meng Y, Wang X, Li Y, Chen J, Chen X. Microbial interactions and dynamic changes of volatile flavor compounds during the fermentation of traditional kombucha. Food Chem [Internet]. 2024;430:137060. Available from: https://www.sciencedirect.com/science/article/pii/S0308814623016783

31. Song X, Canellas E, Nerin C. Screening of volatile decay markers of minced pork by headspace-solid phase microextraction-gas chromatography-mass spectrometry and chemometrics. Food Chem. 2021 Apr;342:128341.

32. Fahmi SS, Happyana N. Discriminating Green Beans of Puntang Arabica Coffees with 1H NMR Based- Metabolomics. Jurnal Kimia Valensi. 2025 May 1;11(1):1–8.

33. Tran T, Romanet R, Roullier-Gall C, Verdier F, Martin A, Schmitt-Kopplin P, et al. Non-Targeted Metabolomic Analysis of the Kombucha Production Process. Metabolites. 2022 Feb 1;12(2).

Downloads

Published

30-11-2025

Issue

Section

Jurnal Kimia VALENSI, Volume 11, No. 2, November 2025

How to Cite

Halal Authentication and Metabolite Mapping of Kombucha Products via Gas Chromatography-Mass Spectrometry (GC-MS) and Chemometric Analysis. (2025). Jurnal Kimia Valensi, 11(2), 187-199. https://doi.org/10.15408/jkv.v11i2.44602