Phenol Biosensor Development Using Bacillus megaterium And Pseudomonas fluorescens Microbes Consortium

Authors

  • Reza Mulyawan Graduate School of Chemistry, IPB University
  • Dyah Iswantini Pradono Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University
  • Novik Nurhidayat Central Research Department of Biology, (BRIN)
  • Deden Saprudin Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University
  • Henny Purwaningsih Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University

DOI:

https://doi.org/10.15408/jkv.v11i2.42356

Keywords:

Bacillus megaterium, biosensor, cyclic voltammetry (cv), phenol, Pseudomonas fluorescens

Abstract

Phenol is a toxic industrial pollutant that must be monitored at a low cost and in real-time.  Conventional amperometric biosensors based on a single enzyme or a single microorganism often suffer from limited sensitivity and operational drift.  Here, we report a microbial consortium biosensor that couples Bacillus megaterium, which supplies phenol-degrading enzymes and structural stability, with Pseudomonas fluorescens, whose electroactive biofilm enhances electron transfer to a screen-printed carbon electrode (SPCE). The electrode potential was swept at 100 mV s⁻¹ between –1 V and +1 V (i.e., a 2 V window traversed in 20 s) to capture the full redox range of phenol by Cyclic Voltammetry (CV).  The oxidation peak current grew linearly with phenol concentration from 27 to 137 mg/L (R² = 0.98), giving a sensitivity of 1.30 µA mg/L and a limit of detection of 13.6 mg/L. Compared with our previously tested single-microbe sensors, the consortium lowered the LOD threefold while maintaining long-term signal stability (>30 days). These results demonstrate that complementary metabolic pathways and the conductive biofilm of P. fluorescens synergistically enhance the electrochemical response provided by B. megaterium.  The consortium-based SPCE platform, therefore, offers a robust, inexpensive tool for on-site phenol monitoring in environmental and industrial settings.

Downloads

Download data is not yet available.

References

1. Kim JY, Park J, Hwang H, Kim JK, Song IK, Choi JW. Catalytic Depolymerization of Lignin Macromolecule to Alkylated Phenols over Various Metal Catalysts in Supercritical Tert-Butanol. J Anal Appl Pyrolysis 2015, 113, 99–106. https://doi.org/10.1016/j.jaap.2014.11.011.

2. Emenike EC, Ogunniyi S, Ighalo JO, Iwuozor KO, Okoro HK, Adeniyi AG. Delonix Regia Biochar Potential in Removing Phenol from Industrial Wastewater. Bioresour Technol Rep 2022, 19, 101195. https://doi.org/10.1016/J.BITEB.2022.101195.

3. Duan W, Meng F, Cui H, Lin Y, Wang G, Wu J. Ecotoxicity of Phenol and Cresols to Aquatic Organisms: A Review. Ecotoxicol Environ Saf 2018, 157, 441–456. https://doi.org/10.1016/J.ECOENV.2018.03.089.

4. Trivellini A, Lucchesini M, Maggini R, Mosadegh H, Villamarin TSS, Vernieri P, Mensuali-Sodi A, Pardossi A. Lamiaceae Phenols as Multifaceted Compounds: Bioactivity, Industrial Prospects and Role of “Positive-Stress.” Ind Crops Prod 2016, 83, 241–254. https://doi.org/10.1016/J.INDCROP.2015.12.039.

5. Ahmaruzzaman M, Mishra SR, Gadore V, Yadav G, Roy S, Bhattacharjee B, Bhuyan A, Hazarika B, Darabdhara J, Kumari K. Phenolic Compounds in Water: From Toxicity and Source to Sustainable Solutions – An Integrated Review of Removal Methods, Advanced Technologies, Cost Analysis, and Future Prospects. J Environ Chem Eng 2024, 12 (3), 112964. https://doi.org/10.1016/J.JECE.2024.112964.

6. Xu Y, Guo L, Zhang H, Zhai H, Ren H. Research Status, Industrial Application Demand and Prospects of Phenolic Resin. RSC Adv. 2019, 9 (50), 28924–28935. https://doi.org/10.1039/C9RA06487G.

7. Ariyanti D, Iswantini D, Sugita P, Nurhidayat N, Effendi H, Ghozali AA, Kurniawan YS. Highly Sensitive Phenol Biosensor Utilizing Selected Bacillus Biofilm Through an Electrochemical Method. Makara J Sci 2020, 24 (1), 24–30. https://doi.org/10.7454/mss.v24i1.11726.

8. Iswantini D, Ghozali AA, Kusmana C, Nurhidayat N. Evaluation of Bacterial Biofilm as Biosensor for Detecting Phenol, Catechol, and 1,2-Dihydroxynaphthalene. Hayati 2021, 28 (4), 262–270. https://doi.org/10.4308/HJB.28.4.262-270.

9. Yurike F, Iswantini D, Purwaningsih H, Achmadi SS. Tyrosinase-Based Paper Biosensor for Phenolics Measurement. Indonesian Journal of Chemistry 2022, 22 (5), 1454. https://doi.org/10.22146/ijc.72607.

10. Kochana J, Wapiennik K, Kozak J, Knihnicki P, Pollap A, Woźniakiewicz M, Nowak J, Kościelniak P. Tyrosinase-Based Biosensor for Determination of Bisphenol A in a Flow-Batch System. Talanta 2015, 144, 163–170. https://doi.org/10.1016/J.TALANTA.2015.05.078.

11. Han E, Yang Y, He Z, Cai J, Zhang X, Dong X. Development of Tyrosinase Biosensor Based on Quantum Dots/Chitosan Nanocomposite for Detection of Phenolic Compounds. Anal Biochem 2015, 486, 102–106. https://doi.org/10.1016/J.AB.2015.07.001.

12. Min K, Park GW, Yoo YJ, Lee JS. A Perspective on the Biotechnological Applications of the Versatile Tyrosinase. Bioresour Technol 2019, 289 (May), 121730. https://doi.org/10.1016/j.biortech.2019.121730.

13. Zheng H, Yan Z, Wang M, Chen J, Zhang X. Biosensor Based on Polyaniline-Polyacrylonitrile-Graphene Hybrid Assemblies for the Determination of Phenolic Compounds in Water Samples. J Hazard Mater 2019, 378 (January), 120714. https://doi.org/10.1016/j.jhazmat.2019.05.107.

14. Kolahchi N, Braiek M, Ebrahimipour G, Ranaei-Siadat SO, Lagarde F, Jaffrezic-Renault N. Direct Detection of Phenol Using a New Bacterial Strain-Based Conductometric Biosensor. J Environ Chem Eng 2018, 6 (1), 478–484. https://doi.org/10.1016/J.JECE.2017.12.023.

15. Balakrishna Pillai A, Jaya Kumar A, Thulasi K, Kumarapillai H. Evaluation of Short-Chain-Length Polyhydroxyalkanoate Accumulation in Bacillus Aryabhattai. Brazilian Journal of Microbiology 2017, 48 (3), 451–460. https://doi.org/10.1016/J.BJM.2017.01.005.

16. Kazmiruk V. Scanning Electron Microscopy; IntechOpen: London, 2012. https://doi.org/10.5772/1973.

17. Donlan, R. Biofilms: Microbial Life on Surfaces. Emerging Infectious Disease journal 2002, 8 (9), 881. https://doi.org/10.3201/eid0809.020063.

18. Frølund B, Palmgren R, Keiding K, Nielsen P. H. Extraction of Extracellular Polymers from Activated Sludge Using a Cation Exchange Resin. Water Res 1996, 30 (8), 1749–1758. https://doi.org/10.1016/0043-1354(95)00323-1.

19. Lovley D. Microbial Energizers: Fuel Cells That Keep on Going. Microbe 2006, 1, 323–329. https://doi.org/10.1128/microbe.1.323.1.

20. Sukma RM, Iswantini D, Nurhidayat N, Rafi M. Bacterial Consortium Biofilm-Based Electrochemical Biosensor for Measurement of Antioxidant Polyphenolic Compounds. Electrochem 2024, 5 (4), 530–545. https://doi.org/10.3390/electrochem5040034.

21. Nurhidayat N, Iswantini D, Bestari P, Purwaningsih H, Sugiarti S. The Accuracy of Ethanol Biosensor Based with Acetobacter Aceti Biofilm in Certifying Halal Food Products. In AIP Conference Proceedings; American Institute of Physics Inc., 2020; Vol. 2243. https://doi.org/10.1063/5.0004769.

22. Galdino FE, Smith JP, Kwamou SI, Kampouris DK, Iniesta J, Smith GC, Bonacin JA, Banks CE. Graphite Screen-Printed Electrodes Applied for the Accurate and Reagentless Sensing of PH. Anal Chem 2015, 87 (23), 11666–11672. https://doi.org/10.1021/acs.analchem.5b01236.

23. Manan FAA, Hong WW, Abdullah J, Yusof NA, Ahmad I. Nanocrystalline Cellulose Decorated Quantum Dots Based Tyrosinase Biosensor for Phenol Determination. Materials Science and Engineering C 2019, 99 (January 2018), 37–46. https://doi.org/10.1016/j.msec.2019.01.082.

24. Mulyawan R, Iswantini D, Nurhidayat N, Saprudin D, Purwaningsih H. Biosensor Performance of Phenol Analysis Using Microbial Consortium of Bacillus Sp. and Pseudomonas Sp. AIP Conf Proc 2022, 2638 (1), 50009. https://doi.org/10.1063/5.0104743.

25. González-Sánchez MI, Gómez-Monedero B, Agrisuelas J, Iniesta J, Valero E. Electrochemical Performance of Activated Screen Printed Carbon Electrodes for Hydrogen Peroxide and Phenol Derivatives Sensing. Journal of Electroanalytical Chemistry 2019, 839, 75–82. https://doi.org/10.1016/J.JELECHEM.2019.03.026.

26. Moutcine A, Laghlimi C, Ziat Y, Isaad J, El Bahraoui S, Chtaini A. Electroanalytical Analysis of Phenol Oxidation Using Bacteria Immobilized by a Polycaprolactone Coating on the Copper Electrode Surface. Sci Rep 2024, 14 (1), 13136. https://doi.org/10.1038/s41598-024-58281-7.

27. Cheol S, Rawson K, Mcneil CJ. Disposable Tyrosinase-Peroxidase Bi-Enzyme Sensor for Amperometric Detection of Phenols. 2002, 17, 1015–1023.

28. Raymundo-Pereira PA, Silva TA, Caetano FR, Ribovski L, Zapp E, Brondani D, Bergamini MF, Marcolino LH, Banks CE, Oliveira ON, Janegitz BC, Fatibello-Filho O. Polyphenol Oxidase-Based Electrochemical Biosensors: A Review. Anal Chim Acta 2020, 1139 (xxxx), 198–221. https://doi.org/10.1016/j.aca.2020.07.055.

29. Forzato C, Vida V, Berti F. Biosensors and Sensing Systems for Rapid Analysis of Phenolic Compounds from Plants: A Comprehensive Review. Biosensors (Basel) 2020, 10 (9). https://doi.org/10.3390/bios10090105.

30. Congur G. Development of a Novel Methyl Germanane Modified Disposable Sensor and Its Application for Voltammetric Phenol Detection. Surfaces and Interfaces 2021, 25, 101268. https://doi.org/10.1016/j.surfin.2021.101268.

31. Mossanha R, Erdmann CA, Santos CS, Wohnrath K, Fujiwara ST, Pessoa CA. Construction of a Biosensor Based on SAM of Thiolactic Acid on Gold Nanoparticles Stabilized by Silsesquioxane Polyelectrolyte for Cathecol Determination. Sens Actuators B Chem 2017, 252, 747–756. https://doi.org/10.1016/j.snb.2017.06.001.

32. Cerrato-Alvarez M, Bernalte E, Bernalte-García MJ, Pinilla-Gil E. Fast and Direct Amperometric Analysis of Polyphenols in Beers Using Tyrosinase-Modified Screen-Printed Gold Nanoparticles Biosensors. Talanta 2019, 193, 93–99. https://doi.org/10.1016/j.talanta.2018.09.093.

33 González-Costas JM, Caruncho-Pérez S, González-Romero E. Enhanced Catalytic Surfaces for Catechol Sensing: Combining Grafted Aryldiazonium Derivative with Cross-Linking Dopamine or Coupling Tyrosinase Immobilizations. Applied Sciences 2025, 15 (8), 4250. https://doi.org/10.3390/app15084250.

34 Bedendi G, De Moura Torquato LD, Webb S, Cadoux C, Kulkarni A, Sahin S, Maroni P, Milton RD, Grattieri M. Enzymatic and Microbial Electrochemistry: Approaches and Methods. ACS Measurement Science Au 2022, 2 (6), 517–541. https://doi.org/10.1021/acsmeasuresciau.2c00042.

Downloads

Published

22-12-2025

Issue

Section

Jurnal Kimia VALENSI, Volume 11, No. 2, November 2025

How to Cite

Phenol Biosensor Development Using Bacillus megaterium And Pseudomonas fluorescens Microbes Consortium. (2025). Jurnal Kimia Valensi, 11(2), 272-283. https://doi.org/10.15408/jkv.v11i2.42356