Fabrication of Calcite Calcium Carbonate from Eggshells Biogenic Waste Through Carbonation Method

Authors

  • Mariyam Mariyam Department of Chemistry, Faculty of Science, Institut Teknologi Sumatera
  • Siti Sunarintyas Department of Dental Biomaterial, Faculty of Dentistry, Universitas Gadjah Mada
  • Leny Yuliatun Research Center for Biomass and Bioproduct, National Research and Innovation Agency
  • Ismi Khuzaimah Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada
  • Nuryono Nuryono Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada

DOI:

https://doi.org/10.15408/jkv.v11i1.41914

Keywords:

CaCO3, calcite, carbonation, eggshell, synthesis

Abstract

Calcium carbonate derived from eggshells has significant potential for use in drug delivery systems, pharmaceutical, food, catalyst, cement, and concrete industries. Although eggshell waste is non-toxic, its excessive accumulation in the environment may contribute to ecological issues. Colonizing pathogenic bacteria in unprocessed eggshell waste poses a potential health risk. The present study outlines the production of precipitated calcium carbonate (PCC) from eggshell waste through a calcination-carbonation process, offering a sustainable approach to its utilization. The calcination was carried out at 900 ºC. The carbonation process was performed in an HNO3 solution, and the NH3 solution was under-treated for 60 minutes. The results exhibited that the precipitated calcium carbonate (PCC) had a purity of 95.2% CaO. It possessed predominantly the calcite phase with a rhombohedral crystal system, as confirmed by the XRD analysis. The crystallite size of PCC was 109.5 nm, measured using the Debye-Scherrer equation. The phase composition of PCC was 99.3% calcite, 0.5% vaterite, and 0.2% aragonite. FTIR analysis further corroborated this data by showing a sharp and unsplit peak at 1419 cm-1, demonstrating the presence of a calcite phase. SEM images revealed a cubic-like morphology, a characteristic of the calcite form of calcium carbonate (CaCO3). The synthesized calcium carbonate in this study holds potential for applications in dental materials and as fillers in polymer matrices for food packaging.

Downloads

Download data is not yet available.

References

1. Azarian MH, Sutapun W. Tuning polymorphs of precipitated calcium carbonate from discarded eggshells: effects of polyelectrolyte and salt concentration. RSC Adv. 2022;12(23):14729-14739. doi:10.1039/D2RA01673G

2. Owuamanam S, Cree D. Progress of bio-calcium carbonate waste eggshell and seashell fillers in polymer composites: A Review. J Compos Sci. 2020;4(2):70. doi:10.3390/jcs4020070

3. Minakshi M, Visbal H, Mitchell DRG, Fichtner M. Bio-waste chicken eggshells to store energy. Dalton Trans. 2018;47(47):16828-16834. doi:10.1039/C8DT03252A

4. Rahmayanti M, Fatimah I, Yahdiyani Ikhsani A, Nur Azizah D. The potential of calcium oxide nanocatalyst from chicken eggshells for biodiesel production using chicken fat waste. Inorg Chem Commun. 2024;165:112604. doi:10.1016/j.inoche.2024.112604

5. Hargis CW, Chen I, Wang Y, Maraghechi H, Gilliam RJ, Monteiro PJM. Microstructure development of calcium carbonate cement through polymorphic transformations. Cem Concr Compos. 2024;153:105715. doi:10.1016/j.cemconcomp.2024.105715

6. Janik W, Kluska D, Staniek N, et al. Advantageous effect of calcium carbonate and chestnut extract on the performance of chitosan-based food packaging materials. Ind Crop Prod. 2024;219:119088. doi:10.1016/j.indcrop.2024.119088

7. Galotta A, Rubenis K, Locs J, Sglavo VM. Dissolution-precipitation synthesis and cold sintering of mussel shells-derived hydroxyapatite and hydroxyapatite/chitosan composites for bone tissue engineering. Open Ceram. 2023;15:100418. doi:10.1016/j.oceram.2023.100418

8. El Hayek J, Belaid H, De Saint Cyr LC, et al. 3D printed bioactive calcium silicate ceramics as antibacterial scaffolds for hard tissue engineering. Mater Adv. 2024;5(8):3228-3246. doi:10.1039/D3MA01088K

9. Mariyam M, Sunarintyas S, Yuliatun L, Irnawati D, Hatmanto AD, Nuryono N. Physicochemical and antibacterial properties of ZnO/chitosan-modified mineral trioxide aggregate composites. CSCEE. 2024;9:100749. doi:10.1016/j.cscee.2024.100749

10. Mariyam M, Sunarintyas S, Nuryono N. Improving mechanical, biological, and adhesive properties of synthesized mineral trioxide aggregate by adding chitosan. Inorg Chem Commun. 2023;149:110446. doi:10.1016/j.inoche.2023.110446

11. Pei Y, Chen P, Li S, Wang J. Producing amorphous calcium carbonate using waste Ca-rich solution generated through the bio-leaching of slag. Sustain Chem Pharm. 2023;36:101333. doi:10.1016/j.scp.2023.101333

12. Fa’izzah M, Widjijono W, Kamiya Y, Nuryono N. Synthesis and characterization of white mineral trioxide aggregate using precipitated calcium carbonate extracted from limestone. KEM. 2020;840:330-335. doi:10.4028/www.scientific.net/KEM.840.330

13. Salavati-Niasari M, Sabet M, Fard ZA, Saberyan K, Mostafa Hosseinpour-Mashkani S. Synthesis and characterization of calcium carbonate nanostructures via simple hydrothermal method. Syn React Inorg Met-Org Nano-Met Chem. 2015;45(6):848-857. doi:10.1080/15533174.2013.862643

14. Liendo F, Arduino M, Deorsola FA, Bensaid S. Factors controlling and influencing polymorphism, morphology and size of calcium carbonate synthesized through the carbonation route: A review. Powder Technol. 2022;398:117050. doi:10.1016/j.powtec.2021.117050

15. Di Marzio L, Borrego-Sánchez A, Felaco M, et al. Praziquantel-loaded calcite crystals: Synthesis, physicochemical characterization, and biopharmaceutical properties of inorganic biomaterials for drug delivery. J Drug Deliv Sci Technol. 2022;68:103021. doi:10.1016/j.jddst.2021.103021

16. Bikharudin, A., Sutarno, Kamiya, Y., N. Nuryono, Green preparation of precipitated calcium carbonate from limestone without calcination step, AIP Conf. Proc. 2553, 020038 (2022). doi:10.1063/5.0111595

17. Spelta JSDO, Galdino AGDS. Bioceramic composite: Hen’s eggshell characterization and main applications. Ifes Ciência. 2018;4(1):9-20. doi:10.36524/ric.v4i1.323

18. Chen PC, Tai CY, Lee KC. Morphology and growth rate of calcium carbonate crystals in a gas-liquid-solid reactive crystallizer. Chem Eng Sci. 1997;52(21-22):4171-4177. doi:10.1016/S0009-2509(97)00259-5

19. Altiner M, Top S, Kaymakoğlu B. Ultrasonic-assisted production of precipitated calcium carbonate particles from desulfurization gypsum. Ultrason Sonochem. 2021;72:105421. doi:10.1016/j.ultsonch.2020.105421

20. Berdonosov SS, Znamenskaya IV, Melikhov IV. Mechanism of the vaterite-to-calcite phase transition under sonication. Inorg Mater. 2005;41(12):1308-1312. doi:10.1007/s10789-005-0307-6

21. Amin Alavi M, Morsali A. Ultrasonic-assisted synthesis of Ca(OH)2 and CaO nanostructures. J Exp Nanosci. 2010;5(2):93-105. doi:10.1080/17458080903305616

22. Ryu MY, You KS, Ahn JW, Kim H. Effect of the pH and basic additives on the precipitation of calcium carbonate during carbonation reaction. Resources Processing. 2007;54(1):14-18. doi:10.4144/rpsj.54.14

23. Tizo MS, Blanco LAV, Cagas ACQ, et al. Efficiency of calcium carbonate from eggshells as an adsorbent for cadmium removal in aqueous solution. Sustain Environ Res. 2018;28(6):326-332. doi:10.1016/j.serj.2018.09.002

24. Ismaiel Saraya MES, Rokbaa HHAEL. Formation and stabilization of vaterite calcium carbonate by using natural polysaccharide. ANP. 2017;06(04):158-182. doi:10.4236/anp.2017.64014

25. Neumann M, Epple M. Monohydrocalcite and its relationship to hydrated amorphous calcium carbonate in biominerals. Eur J Inorg Chem. 2007;2007(14):1953-1957. doi:10.1002/ejic.200601033

26. Chakrabarty D, Mahapatra S. Aragonite crystals with unconventional morphologies. J Mater Chem. 1999;9(11):2953-2957. doi:10.1039/a905407c

27. Toffolo MB, Regev L, Dubernet S, Lefrais Y, Boaretto E. FTIR-based crystallinity assessment of aragonite–calcite mixtures in archaeological lime binders altered by diagenesis. Minerals. 2019;9(2):121. doi:10.3390/min9020121

28. Addadi L, Raz S, Weiner S. Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv Mater. 2003;15(12):959-970. doi:10.1002/adma.200300381

29. Maisyarah AO, Shofiyani A. Sintesis CaO dari cangkang kerang ale-ale (Meretrix meretrix) pada suhu kalsinasi 900ºC. Jurnal Kimia Khatulistiwa. 2019;8(1):32-35. ISSN 2303-1077

30. Ma M, Yan Y, Qi C, et al. Symmetry-breaking assembled porous calcite microspheres and their multiple dental applications. Sci China Materials. 2017;60(6):516–528. doi:10.1007/s40843-017-9038-5

31. Jimoh OA, Ariffin KS, Hussin HB, Temitope AE. Synthesis of precipitated calcium carbonate: A review. Carbonates Evaporites. 2018;33(2):331-346. doi:10.1007/s13146-017-0341-x

32. Boulos RA, Zhang F, Tjandra ES, Martin AD, Spagnoli D, Raston CL. Spinning up the polymorphs of calcium carbonate. Sci Rep. 2014;4(1):3616. doi:10.1038/srep03616

Downloads

Published

31-05-2025

Issue

Section

Jurnal Kimia VALENSI, Volume 11, No. 1, May 2025

How to Cite

Fabrication of Calcite Calcium Carbonate from Eggshells Biogenic Waste Through Carbonation Method. (2025). Jurnal Kimia Valensi, 11(1), 9-17. https://doi.org/10.15408/jkv.v11i1.41914