Isolation of Endophytic Pseudomonas Strains from Papaya Leaves and Their Extracellular Enzyme Production and Antioxidant Profile
DOI:
https://doi.org/10.15408/jkv.v11i1.40921Keywords:
Endophytic bacteria, genotypic, papaya leaves, phenotypicAbstract
Endophytic bacteria, symbiotic microorganisms residing in plant tissues, produce bioactive compounds similar to host plants, such as antioxidants. These antioxidants are crucial in combating free radicals linked to degenerative diseases. This study isolates and characterizes two endophytic bacterial strains from papaya leaves, exploring their enzymatic and antioxidant activities. Two isolates of endophytic bacteria from papaya leaves were obtained, F1-A and F1-B. F1-A endophytic bacteria are types of monobacilli, Gram-positive bacteria. F1-B endophytic bacteria are types of Bacilli. Using 16S rRNA analysis, both isolates were predicted to belong to the Pseudomonas bacterial strain. Research on optimizing their growth under various temperatures and pH conditions showed that both isolates grow best at 37°C. F1-B provides a better opportunity as a source of industrial enzymes because it can excrete amylase, urease, cellulose, and protease enzymes compared to F1-A, which can only produce amylase and protease enzymes. Nevertheless, F1-A can act as a potent antioxidant with an IC50 of 34.18 ppm compared to F1-B, which has an IC50 value of 292.31 ppm. The IC50 value of the F1-A isolate was not much different from the IC50 of quercetin, which was 12.50 ppm. The ability of F1-A as an antioxidant is also influenced by the results of phytochemical screening, which can contain more secondary metabolites than F1-B. These results highlight the potential of Pseudomonas strains as sources of industrial enzymes and natural antioxidants, warranting further investigation.
Downloads
References
1. Noor Atiqah A, Maisarah A, Asmah R. Comparison of Antioxidant Properties of Tamarillo (Cyphomandra betacea), Cherry Tomato (Solanumly copersicum var. cerasiform) and Tomato (Lyopersicon esulentum). Int Food Res J. 2014;21(6):2355–2362.
2. Afzal I, Shinwari ZK, Sikandar S, Shahzad S. Plant Beneficial Endophytic Bacteria; Mechanism, Diversity, Host Range and Genetic Determinta. Microbiol Res. 2019;221:36–49. doi:10.1016/J.MICRES.2019.02.001
3. Nair DN, Padmavathy S. Impact of Endophytic Microorganisms on Plants, Environment and Humans. Sci World J. 2014;2014(1):250693. doi:10.1155/2014/250693
4. Aswani R, Jishma P, Radhakrishnan EK. Endophytic bacteria from the medicinal plants and their potential applications. In: Microbial Endophytes. Vol 13. Elsevier; 2020:15–36. doi:10.1016/B978-0-12-818734-0.00002-4
5. Ahmed M, Fouda A, Abdel‐rahman MA, Salem SS, Elsaied A, Oelmuller R, Hijri M, Bhowmik A, Elkelish A, Hassan SE. Harnessing Bacterial Endophytes for Promotion of Plant Growth and Biotechnological Applications: An Overview. Plants (Basel, Switzerland). 2021;10(5). doi:10.3390/PLANTS10050935
6. Wu W, Chen W, Liu S, Wu J, Zhu Y, Qin L, Zhu B. Beneficial Relationships Between Endophytic Bacteria and Medicinal Plants. Front Plant Sci. 2021;12:646146. doi:https://doi.org/10.3389/fpls.2021.646146
7. Juárez-Rojop IE, Tovilla-Zárate CA, Aguilar-Domínguez DE, La-Fuente LFR, Lobato-Garcia CE, Ble-Castillo JL, Lopez-Meraz L, Diaz-Zagoya JC, Bermudez-Ocana DY. Phytochemical Screening and Hypoglycemic Activity of Carica Papaya Leaf in Streptozotocin-Induced Diabetic Rats. Rev Bras Farmacogn. 2014;24(3):341–347. doi:10.1016/J.BJP.2014.07.012
8. Palanisamy P, M Basalingappa K. Phytochemical Analysis and Antioxidant Properties of Leaf Extracts of Carica Papaya. Asian J Pharm Clin Res. 2015;13(11):58–62. doi:10.22159/AJPCR.2020.V13I11.38956
9. Vuong Q V., Hirun S, Roach PD, Bowyer MC, Phillips PA, Scarlett CJ. Effect of extraction conditions on total phenolic compounds and antioxidant activities of Carica papaya leaf aqueous extracts. J Herb Med. 2013;3(3):104–111. doi:10.1016/j.hermed.2013.04.004
10. Dagne E, Dobo B, Bedewi Z. Antibacterial Activity of Papaya (Carica papaya) Leaf and Seed Extracts Against Some Selected Gram-Positive and Gram- Negative Bacteria. Pharmacogn J. 2021;13(6s):1727–1733. doi:10.5530/pj.2021.13.223
11. Candra A, Fahrimal Y, Yusni Y, Azwar A, Santi TD. Phytochemistry and Antifatigue Activities of Carica Papaya Leaf from Geothermal, Coastal and Urban Areas. Narra J. 2024;4(1):e321. doi:10.52225/narra.v4i1.321
12. Hasimun P, Suwendar, Ernasari GI. Analgetic Activity of Papaya (Carica papaya L.) Leaves Extract. Procedia Chem. 2014;13:147–149. doi:10.1016/J.PROCHE.2014.12.019
13. Sharma A, Bachheti A, Sharma P, Bachheti RK, Husen A. Phytochemistry, pharmacological activities, nanoparticle fabrication, commercial products and waste utilization of Carica papaya L.: A comprehensive review. Curr Res Biotechnol. 2020;2:145–160. doi:10.1016/J.CRBIOT.2020.11.001
14. Nahas HHA, Abdel-Rahman MA, Gupta VK, Abdel-Azeem AM. Myco-Antioxidants: Insights Into The Natural Metabolic Treasure and Their Biological Effects. Sydowia. 2003;75:151. doi:10.12905/0380.sydowia75-2023-0151
15. Rossiana N, Indrawati I, Rahayuningsih S, Haifa I, Mayawatie B. Biodiversity Of Macroalgae Endhophytic Microorganisms and It’s Potential As An Antibacteria Againts Eschericia coli On West Beach Pasir Putih Pangandaran, West Java. In: Proceedings of the 1st International Conference on Islam, Science and Technology, ICONISTECH 2019, 11-12 July 2019, Bandung, Indonesia. EAI; 2020. doi:10.4108/eai.11-7-2019.2297823
16. Singh BK, Trivedi P, Egidi E, Macdonald CA, Delgado-Baquerizo M. Crop microbiome and sustainable agriculture. Nat Rev Microbiol 2020 1811. 2020;18(11):601–602. doi:10.1038/s41579-020-00446-y
17. Photolo MM, Mavumengwana V, Sitole L, Tlou MG. Antimicrobial and Antioxidant Properties of a Bacterial Endophyte, Methylobacterium radiotolerans MAMP 4754, Isolated from Combretum erythrophyllum Seeds. Int J Microbiol. 2020;2020:1–11. Diakses April 22, 2025. https://pmc.ncbi.nlm.nih.gov/articles/PMC7060864/
18. Joshi S, Singh AV, Prasad B. Enzymatic Activity and Plant Growth Promoting Potential of Endophytic Bacteria Isolated from Ocimum sanctum and Aloe vera. Int J Curr Microbiol Appl Sci. 2018;7(06):2314–2326. doi:10.20546/IJCMAS.2018.706.277
19. Ikeyi A, Ogbonna A, Inain DE, Ike A. Phytochemical analyses of pineapple fruit (Ananas comosus) and fluted pumpkin leaves (Telfairia occidentalis). World J Pharm Res. Published online 2013.
20. Walsh PS, Metzger DA, Higuchi R. Chelex 100 as a Medium for Simple Extraction of DNA for PCR-Based Typing from Forensic Material. Biotechniques. 2013;54(3):134–139. doi:10.2144/000114018
21. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol. 2011;28(10):2731–2739. doi:10.1093/molbev/msr121
22. Srikanth G, Babu M, Kavitha CN, Rao MEB, Vinjakumar N, Pradeep C. Studies on in-vitro Antioxidant Activities of Carica papaya Aqueous Leaf Extract. RJPBCS. Published online 2010:59–65.
23. Noll P, Lilge L, Hausmann R, Henkel M. Modeling and Exploiting Microbial Temperature Response. Processes. 2020;8(1):121. doi:10.3390/pr8010121
24. Price PB, Sowers T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci. 2004;101(13):4631–4636. doi:10.1073/pnas.0400522101
25. Zhang Q, Yu Z, Wang X, Tian J. Effects of inoculants and environmental temperature on fermentation quality and bacterial diversity of alfalfa silage. Anim Sci J. 2018;89(8):1085–1092. doi:10.1111/asj.12961
26. Łepecka A, Szymański P, Rutkowska S, Iwanowska K, Kołożyn-Krajewska D. The Influence of Environmental Conditions on the Antagonistic Activity of Lactic Acid Bacteria Isolated from Fermented Meat Products. Foods. 2021;10(10):2267. doi:10.3390/foods10102267
27. Michael J. Leboffe, Burton E. Pierce. Microbiology: Laboratory Theory and Application. Morton Publishing Company; 2015.
28. Lund P, Tramonti A, De Biase D, Pasteur-Fondazione I, Bolognetti C. Coping with Low pH: Molecular Strategies in Neutralophilic Bacteria. FEMS Microbiol Rev. 2014;38(6):1091–1125. doi:10.1111/1574-6976.12076
29. Makuwa SC, Serepa-Dlamini MH. The Antibacterial Activity of Crude Extracts of Secondary Metabolites from Bacterial Endophytes Associated with Dicoma anomala. Chaves Lopez C, ed. Int J Microbiol. 2021;2021:1–12. doi:10.1155/2021/8812043
30. Singh B, Sharma P, Kumar A, Chadha P, Kaur R, Kaur A. Antioxidant and in vivo genoprotective effects of phenolic compounds identified from an endophytic Cladosporium velox and their relationship with its host plant Tinospora cordifolia. J Ethnopharmacol. 2016;194:450–456. doi:10.1016/j.jep.2016.10.018
31. Strobel G, Daisy B. Bioprospecting for Microbial Endophytes and Their Natural Products. Microbiol Mol Biol Rev. 2003;67(4):491–502. doi:10.1128/MMBR.67.4.491-502.2003
32. Narayanan Z, Glick BR. Secondary Metabolites Produced by Plant Growth-Promoting Bacterial Endophytes. Microorganisms. 2022;10(10):2008. doi:10.3390/microorganisms10102008
33. Aswani R, Jishma P, Radhakrishnan EK. Endophytic bacteria from the medicinal plants and their potential applications. Microb Endophytes Prospect Sustain Agric. Published online 1 Januari 2020:15–36. doi:10.1016/B978-0-12-818734-0.00002-4
34. Reddy GSN, Matsumoto GI, Schumann P, Stackebrandt E, Shivaji S. Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov. Int J Syst Evol Microbiol. 2004;54(3):713–719. doi:10.1099/ijs.0.02827-0
35. Park YD, Lee HB, Yi H, Kim Y, Bae KS, Choi J, Jung HS, Chun J. Pseudomonas panacis sp. nov., isolated from the surface of rusty roots of Korean ginseng. Int J Syst Evol Microbiol. 2005;55(4):1721–1724. doi:10.1099/ijs.0.63592-0
36. Fendri I, Chaari A, Dhouib A, Jlassi B, Abousalham A, Carriere F, Sayadi S, Abdelkafi S. Isolation, identification and characterization of a new lipolytic Pseudomonas sp., strain AHD‐1, from Tunisian soil. Environ Technol. 2010;31(1):87–95. doi:10.1080/09593330903369994
37. Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. Oxford University Press; 2015.
38. Molyneux P. The Use of The Stable Free Radical Diphenylpicrylhydrazyl (DPPH) for Estimating Antioxidant. Songklanakarin J Sci Technol. 2004;26(2):211–219.
39. Shahidi F, Zhong Y. Measurement of antioxidant activity. J Funct Foods. 2015;18:757–781. doi:10.1016/j.jff.2015.01.047
40. Boeing JS, Barizão ÉO, e Silva BC, Montanher PF, de Cinque Almeida V, Visentainer JV. Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: application of principal component analysis. Chem Cent J. 2014;8(1):48. doi:10.1186/s13065-014-0048-1
41. Soltani M, Parivar K, Baharara J, Amin Kerachian M, Asili J, Putative AJ. Putative Mechanism for Apoptosis-Inducing Properties of Crude Saponin Isolated from Sea Cucumber (Holothuria leucospilota) As an Antioxidant Compound. Iran J Basic Med Sci. 2015;18(2):180–187.
42. Suryanti V, Sariwati A, Sari F, Handayani DS, Risqi HD. Metabolite Bioactive Contents of Parkia timoriana (DC) Merr Seed Extracts in Different Solvent Polarities. HAYATI J Biosci. 2022;29(5):681–694. doi:10.4308/hjb.29.5.681-694
43. Gutiérrez-del-Río I, López-Ibáñez S, Magadán-Corpas P, dkk. Terpenoids and Polyphenols as Natural Antioxidant Agents in Food Preservation. Antioxidants. 2021;10(8):1264. doi:10.3390/antiox10081264
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Purbowatiningrum Ria Sarjono

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.