Synthesis of Zr/La-BTC Bimetallic Metal-Organic Framework (MOF) for Oleic Acid Esterification
DOI:
https://doi.org/10.15408/jkv.v10i1.37621Keywords:
Biodiesel, esterification, metal organic framework, oleic acid, Zr/La-BTCAbstract
Biodiesel plays an essential role in renewable energy as an alternative fuel to tackle the challenges of global warming, environmental degradation, and alternative fossil fuels. Oleic acid can be converted into biodiesel by the esterification process, which employs heterogeneous catalysts such as metal-organic frameworks (MOF). In this study, Zr/La-BTC MOFs were used as different kinds of catalysts to change oleic acid into biodiesel. The characterization results of Zr-BTC, La-BTC, and Zr/La-BTC using FTIR and XRD show that the MOF has been successfully formed. The crystallite sizes for La-BTC, and Zr/La-BTC MOFs are 15.7407 nm and 39.0392 nm, respectively. The surface area of Zr-BTC, La-BTC, and Zr/La-BTC MOFs are 167.101 m2/g, 12.328 m2/g, and 4.764 m2/g. The morphology of Zr-BTC MOF using SEM is irregular, La-BTC is rod-shaped crystal, and Zr/La-BTC is like a knot bond with a narrow waist. The most optimal reaction was obtained at a 5% (w/w) catalyst dosage of total oleic acid and methanol (1:60 mol), 65 °C, and a reaction time of 4 hours, producing 78.11% oleic acid conversion. GC-MS analysis identified that the biodiesel contains oleic acid, palmitic acid, methyl oleate, and methyl palmitate.Downloads
References
Basumatary SF, Patir K, Das B, et al. Production of renewable biodiesel using metal organic frameworks based materials as efficient heterogeneous catalysts. J Clean Prod. 2022;358:131955. doi:10.1016/j.jclepro.2022.131955
Kusmiyati K. Reaksi katalitis esterifikasi asam oleat dan metanol menjadi biodiesel dengan metode distilasi reaktif. Reaktor, 2008; 12(2), 78-82. https://doi.org/10.14710/reaktor.12.2.78-82.
Zhang Y, Wong WT, Yung KF. Biodiesel production via esterification of oleic acid catalyzed by chlorosulfonic acid modified zirconia. Applied Energy, 2014; 116, 191–198. https://doi.org/10.1016/j.apenergy.2013.11.044
Zhou K, Chaemchuen S. Metal-Organic Framework as Catalyst in Esterification of Oleic Acid for Biodiesel Production. International Journal of Environmental Science and Development. 2017;8(4):251-254. doi:10.18178/ijesd.2017.8.4.957
Moradi P, Saidi M, Najafabadi AT. Biodiesel production via esterification of oleic acid as a representative of free fatty acid using electrolysis technique as a novel approach: Non-catalytic and catalytic conversion. Process Safety and Environmental Protection. 2021;147:684-692. doi:10.1016/j.psep.2020.12.032
Dechakhumwat S, Hongmanorom P, Thunyaratchatanon C, Smith SM, Boonyuen S, Luengnaruemitchai A. Catalytic activity of heterogeneous acid catalysts derived from corncob in the esterification of oleic acid with methanol. Renew Energy. 2020;148:897-906. doi:10.1016/j.renene.2019.10.174
Aziz I, Nurbayti S, Ulum B. Esterifikasi Asam Lemak Bebas Dari Minyak Goreng Bekas. Jurnal Kimia VALENSI. 2011;2(2). doi:10.15408/jkv.v2i2.201
Zhang Q, Yang X, Yao J, Cheng J. Bimetallic MOF-Derived Synthesis of Cobalt-Cerium Oxide Supported Phosphotungstic Acid Composites for the Oleic Acid Esterification. J Chem. 2021;2021:1-9. doi:10.1155/2021/2131960
Zhang Q, Wang J, Zhang S, Ma J, Cheng J, Zhang Y. Zr-Based Metal-Organic Frameworks for Green Biodiesel Synthesis: A Minireview. Bioengineering. 2022;9(11):700. doi:10.3390/bioengineering9110700
Taddeo F, Vitiello R, Russo V, Tesser R, Turco R, Di Serio M. Biodiesel Production from Waste Oil Catalysed by Metal-Organic Framework (MOF-5): Insights on Activity and Mechanism. Catalysts. 2023;13(3):503. doi:10.3390/catal13030503
Adawiah A, Yudhi MDL, Zulys A. Photocatalytic Degradation of Methylene Blue and Methyl Orange by Y-PTC Metal-Organic Framework. Jurnal Kimia Valensi. 2021;7(2):129-141. doi:10.15408/jkv.v7i2.22267
Wen Y, Zhang J, Xu Q, Wu XT, Zhu QL. Pore surface engineering of metal–organic frameworks for heterogeneous catalysis. Coord Chem Rev. 2018;376:248-276. doi:10.1016/j.ccr.2018.08.012
Jiang Z, Chen Y, Xing M, Ji P, Feng W. Fabrication of a Fibrous Metal–Organic Framework and Simultaneous Immobilization of Enzymes. ACS Omega. 2020;5(36):22708-22718. doi:10.1021/acsomega.0c00868
Lestari WW, Inayah WC, Rahmawati F, Larasati L, Purwanto A. Metal-Organic Frameworks Based on Zinc(II) and Benzene-1,3,5-Tricarboxylate Modified Graphite: Fabrication and Application as an Anode Material in Lithium-Ion Batteries. Journal of Mathematical and Fundamental Sciences. 2020;52(1):81-97. doi:10.5614/j.math.fund.sci.2020.52.1.6
Mylonas-Margaritis I, Mayans J, McArdle P, Papatriantafyllopoulou C. ZnII and CuII-Based Coordination Polymers and Metal Organic Frameworks by the of Use of 2-Pyridyl Oximes and 1,3,5-Benzenetricarboxylic Acid. Molecules. 2021;26(2):491. doi:10.3390/molecules26020491
Li Y, Zhong Y, Huang J. The synthesis of a lanthanum metal–organic framework and its sensitivity electrochemical detection of H2O2. Chemical Papers. 2017;71(5):913-920. doi:10.1007/s11696-016-0011-9
Riezzati N, Krisnandi YK, Zulys A. Metal organic frameworks of lanthanum and iron using BDC linker as catalysts for glucose conversion into 5-hydroxymethylfurfural (5-HMF). IOP Conf Ser Mater Sci Eng. 2020;902(1):012044. doi:10.1088/1757-899X/902/1/012044
Buhori A, Zulys A, Gunlazuardi J. Synthesis of Lanthanum metal-organic frameworks (La-MOFs) as degradation photocatalyst of Rhodamine-B. In: ; 2020:040033. doi:10.1063/5.0013010
Zulys A, Adawiah A, Gunlazuardi J, Yudhi MDL. Light-Harvesting Metal-Organic Frameworks (MOFs) La-PTC for Photocatalytic Dyes Degradation. Bulletin of Chemical Reaction Engineering & Catalysis. 2021;16(1):170-178. doi:10.9767/bcrec.16.1.10309.170-178
Batubara NH, Zulys A. Synthesis, Structural, Spectroscopic, and Morphology of Metal-Organic Frameworks Based on La (III) and Ligand 2,6-Napthalenedicarboxylic acid (La-MOFs) for Hydrogen Production. IOP Conf Ser Mater Sci Eng. 2019;546(4):042005. doi:10.1088/1757-899X/546/4/042005
Tshuma P, Makhubela BCE, Öhrström L, et al. Cyclometalation of lanthanum( iii ) based MOF for catalytic hydrogenation of carbon dioxide to formate. RSC Adv. 2020;10(6):3593-3605. doi:10.1039/C9RA09938G
Larasati I, Winarni D, Putri FR, Hanif QA, Lestari WW. Synthesis of Metal-organic Frameworks Based on Zr 4+ and Benzene 1,3,5-Tricarboxylate Linker as Heterogeneous Catalyst in the Esterification Reaction of Palmitic Acid. IOP Conf Ser Mater Sci Eng. 2017;214:012006. doi:10.1088/1757-899X/214/1/012006
Deus MS, Deus KCO, Lira DS, Oliveira JA, Padilha CEA, Souza DFS. Esterification of Oleic Acid for Biodiesel Production Using a Semibatch Atomization Apparatus. International Journal of Chemical Engineering. 2023;2023:1-14. doi:10.1155/2023/6957812
González CMO, Morales EMC, Tellez A de MN, Quezada TES, Kharissova O V., Méndez-Rojas MA. CO2 capture by MOFs. In: Handbook of Greener Synthesis of Nanomaterials and Compounds. Elsevier; 2021:407-448. doi:10.1016/B978-0-12-822446-5.00018-6
McKinstry C, Cathcart RJ, Cussen EJ, Fletcher AJ, Patwardhan S V., Sefcik J. Scalable continuous solvothermal synthesis of metal organic framework (MOF-5) crystals. Chemical Engineering Journal. 2016;285:718-725. doi:10.1016/j.cej.2015.10.023
Heravi MM, Ghavidel M, Mohammadkhani L. Beyond a solvent: triple roles of dimethylformamide in organic chemistry. RSC Adv. 2018;8(49):27832-27862. doi:10.1039/C8RA04985H
Milakin KA, Gupta S, Kobera L, et al. Effect of a Zr-Based Metal–Organic Framework Structure on the Properties of Its Composite with Polyaniline. ACS Appl Mater Interfaces. 2023;15(19):23813-23823. doi:10.1021/acsami.3c03870
Adawiah A, Gunawan MS, Aziz I, Oktavia W. Synthesis of Bimetallic Metal-Organic Frameworks (MOFs) La-Y-PTC for Enhanced Dyes Photocatalytic Degradation. Bulletin of Chemical Reaction Engineering & Catalysis. 2023;18(1):118-130. doi:10.9767/bcrec.16130
Lestari WW, Suharbiansah RSR, Larasati L, et al. A zirconium(IV)-based metal–organic framework modified with ruthenium and palladium nanoparticles: synthesis and catalytic performance for selective hydrogenation of furfural to furfuryl alcohol. Chemical Papers. 2022;76(8):4719-4731. doi:10.1007/s11696-022-02193-1
Kong L, Zhang J, Wang Y, et al. Bowknot-like Zr/La bimetallic organic frameworks for enhanced arsenate and phosphate removal: Combined experimental and DFT studies. J Colloid Interface Sci. 2022;614:47-57. doi:10.1016/j.jcis.2022.01.033
Arbain NH, Salimon J. The Effects of Various Acid Catalyst on the Esterification of Jatropha Curcas Oil based Trimethylolpropane Ester as Biolubricant Base Stock. E-Journal of Chemistry. 2011;8(s1):S33-S40. doi:10.1155/2011/789374
Kumari A, Kaushal S, Singh PP. Bimetallic metal organic frameworks heterogeneous catalysts: Design, construction, and applications. Mater Today Energy. 2021;20:100667. doi:10.1016/j.mtener.2021.100667
Kumaresan L, Prabhu A, Palanichamy M, Arumugam E, Murugesan V. Synthesis and characterization of Zr4+, La3+ and Ce3+ doped mesoporous TiO2: Evaluation of their photocatalytic activity. J Hazard Mater. 2011;186(2-3):1183-1192. doi:10.1016/j.jhazmat.2010.11.124
Salunke JY, Yadav GD. Lanthanum doped zirconia as an efficient catalyst for reductive amination of 2-methoxybenzaldehyde with dimethylformamide via Leuckart type reaction. ES Materials & Manufacturing. Published online 2023. doi:10.30919/esmm5f853
Xu L, Yang Q, Hu L, et al. Insights over Titanium Modified FeMgOx Catalysts for Selective Catalytic Reduction of NOx with NH3: Influence of Precursors and Crystalline Structures. Catalysts. 2019;9(6):560. doi:10.3390/catal9060560
Yu L, Zhong Q, Deng Z, Zhang S. Enhanced NOx removal performance of amorphous Ce-Ti catalyst by hydrogen pretreatment. J Mol Catal A Chem. 2016;423:371-378. doi:10.1016/j.molcata.2016.07.040
Wang C, Yang S, Chang H, Peng Y, Li J. Dispersion of tungsten oxide on SCR performance of V2O5WO3/TiO2: Acidity, surface species and catalytic activity. Chemical Engineering Journal. 2013;225:520-527. doi:10.1016/j.cej.2013.04.005
Senoymak Tarakcı MI, Ilgen O. Esterification of Oleic Acid with Methanol Using Zr(SO4)2 as a Heterogeneous Catalyst. Chem Eng Technol. 2018;41(4):845-852. doi:10.1002/ceat.201700254
Villoria-del-Álamo B, Rojas-Buzo S, García-García P, Corma. Zr-MOF-808 as catalyst for amide esterification. Chem. Eur. J. 2021, 27, 4588. https://doi.org/10.1002/chem.202003752