Improvement of PVA-Glucomanan-Acrylamide Hydrogel as Base Material of Immobilization

Authors

  • Repita Sari IPB University
  • Sri Mulijani Chemistry Departement, Faculty of Mathematics and Natural Science, IPB University, Kampus IPB Dramaga, Bogor, 16680, Indonesia
  • Meri Suhartini Centre of Application of Isotops, National Nuclear Energy Agency, Jl. Lebak Bulus Raya No. 49 Pasar Jumat, South Jakarta, 12070, Indonesia

DOI:

https://doi.org/10.15408/jkv.v8i1.20332

Keywords:

Controlled release, Gamma irradiation, Glucomannan, IPN hydrogel

Abstract

Hydrogel products are currently widely used in various fields, one of which is agriculture. Most hydrogels are made of synthetic polymers because they have good absorption but are not biodegradable. Glucomannan is a natural polymer that is able to absorb large amounts of water and biodegradable but it is difficult to maintain water content. One method to improve the mechanical properties of hydrogels is by modifying the hydrogels through the formation of an interpenetrating network (IPN) between natural polymers and synthetic polymers. In this study, the IPN hydrogel based on polyvinyl alcohol and glucomannan and acrylamide as a crosslinker was made by combining freeze-thaw and gamma irradiation techniques. The results showed that the hydrogel water absorption after immersion for 24 hours was 311.09% where the weight of glucomannan was 1 g and acrylamide was 0.75 g and the irradiation dose was 30 kGy. The result of cumulative release test of paraquat immobilized into the hydrogel was 12.00% within 10 days. This indicates that the PVA-glucomannan-acrylamide hydrogel can be used as a controlled paraquat release matrix so as to minimize the effect on the overuse of pesticides.

Downloads

Download data is not yet available.

Author Biography

  • Repita Sari, IPB University
    Chemistry

References

Abd El-Rehim, H. A., Hegazy, E. S. A., & Abd El-Mohdy, H. L. (2005). Properties of polyacrylamide-based hydrogels prepared by electron beam irradiation for possible use as bioactive controlled delivery matrices. Journal of Applied Polymer Science, 98(3), 1262–1270. https://doi.org/10.1002/app.22167

Alonso-Sande, M., Teijeiro-Osorio, D., Remuñán-López, C., & Alonso, M. J. (2009). Glucomannan, a promising polysaccharide for biopharmaceutical purposes. European Journal of Pharmaceutics and Biopharmaceutics, 72(2), 453–462. https://doi.org/10.1016/j.ejpb.2008.02.005

Aouada, F. A., De Moura, M. R., Orts, W. J., & Mattoso, L. H. C. (2010). Polyacrylamide and methylcellulose hydrogel as delivery vehicle for the controlled release of paraquat pesticide. Journal of Materials Science, 45(18), 4977–4985. https://doi.org/10.1007/s10853-009-4180-6

Cipriano, B. H., Banik, S. J., Sharma, R., Rumore, D., Hwang, W., Briber, R. M., & Raghavan, S. R. (2014). Superabsorbent hydrogels that are robust and highly stretchable. Macromolecules, 47(13), 4445–4452. https://doi.org/10.1021/ma500882n

Demitri, C., Scalera, F., Madaghiele, M., Sannino, A., & Maffezzoli, A. (2013). Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. International Journal of Polymer Science, 2013. https://doi.org/10.1155/2013/435073

Erizal, E., & Abidin, Z. (2011). Sintesis hidrogel campuran poli (vinil alkohol) (PVA)- natrium alginat dengan kombinasi beku-leleh dan radiasi gamma untuk bahan pembalut luka synthesis of hydrogel poly (vinyl alcohol) (PVA)-Sodium alginate blend by freeze-thawing followed by Ga. Jurnal Ilmiah Aplikasi Isotop Dan Radiasi, 7, 21–28.

Erizal, Erizal. (2019). Synthesis and characterization of crosslinked polyacrylamide (Paam)-Carrageenan hydrogels superbasorbent prepared by gamma radiation. Indonesian Journal of Chemistry, 10(1), 12–19. https://doi.org/10.22146/ijc.21474

Erizal, Erizal, Abbas, B., Sukaryo, S. G., & Barleany, D. R. (2015). Synthesis and characterization superabsorbent hydrogels of partially neutralized acrylic acid prepared using gamma irradiation; swelling and thermal behavior. Indonesian Journal of Chemistry, 15(3), 281–287. https://doi.org/10.22146/ijc.21197

Erizal, Erizal, Pratiwi, E. W., Perkasa, D. P., Noviyantih, N., Abbas, B., & Sudirman, S. (2018). Imobilisasi propanolol HCl pada hidrogel poli (vinil alkohol) - natrium alginat dengan teknik radiasi. Jurnal Kimia Dan Kemasan, 40(1), 47. https://doi.org/10.24817/jkk.v40i1.2755

Francis, S., Mitra, D., Dhanawade, B. R., Varshney, L., & Sabharwal, S. (2009). Gamma radiation synthesis of rapid swelling superporous polyacrylamide hydrogels. Radiation Physics and Chemistry, 78(11), 951–953. https://doi.org/10.1016/j.radphyschem.2009.07.020

Jayaramudu, T., Ko, H. U., Kim, H. C., Kim, J. W., Li, Y., & Kim, J. (2017). Transparent and semi-interpenetrating network P(vinyl alcohol)- P(Acrylic acid) hydrogels: pH responsive and electroactive application. International Journal of Smart and Nano Materials, 8(2–3), 80–94. https://doi.org/10.1080/19475411.2017.1335247

Kamoun, E. A., Chen, X., Mohy Eldin, M. S., & Kenawy, E. R. S. (2015). Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: A review of remarkably blended polymers. Arabian Journal of Chemistry, 8(1), 1–14. https://doi.org/10.1016/j.arabjc.2014.07.005

Karadaǧ, E., Saraydin, D., & Güven, O. (2001). Radiation induced superabsorbent hydrogels. Acrylamide/itaconic acid copolymers. Macromolecular Materials and Engineering, 286(1), 34–42. https://doi.org/10.1002/1439-2054(20010101)286:1<34::AID-MAME34>3.0.CO;2-J

Li, Z., Su, Y., Xie, B., Liu, X., Gao, X., & Wang, D. (2015). Novel biocompatible double network hydrogels consisting of konjac consisting of konjac glucomannan with high. Journal of Materials Chemistry B: Materials for Biology and Medicine, 3(January), 1769–1778. https://doi.org/10.1039/C4TB01653J

Lin, S., & Gu, L. (2015). Influence of crosslink density and stiffness on mechanical properties of type I collagen gel. Materials, 8(2), 551–560. https://doi.org/10.3390/ma8020551

Rahman, M. S., Islam, M. M., Islam, M. S., Zaman, A., Ahmed, T., Biswas, S., Sharmeen, S., Rashid, T. U., & Rahman, M. M. (2019). Morphological Characterization of Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-77830-3_28

Rashidzadeh, A., Olad, A., Hejazi, m. J. (2015). Controlled release systems based on intercalated paraquat onto montmorillonite and clinoptilolite clays encapsulated with sodium alginate. Advances in Polymer Technology. 36(2), 1–9. https://doi.org/10.1002/adv.21597

Sudrajat, D. S. P. A. (2009). Cara Induksi Radiasi Gamma Untuk Aplikasi Pembalut Luka Pendahuluan Hidrogel adalah salah satu jenis makromolekul polimer hidrofilik yang berbentuk jaringan berikatan silang, mempunyai kemampuan mengembang dalam air (swelling), dan memiliki daya diffus. 177–193.

Sun, Y., Ma, Y., Fang, G., Ren, S., & Fu, Y. (2016). Controlled Pesticide release from porous composite hydrogels based on lignin and polyacrylic acid. BioResources, 11(1), 2361–2371. https://doi.org/10.15376/biores.11.1.2361-2371

Wu, W., Liu, J., Cao, S., Tan, H., Li, J., Xu, F., & Zhang, X. (2011). Drug release behaviors of a pH sensitive semi-interpenetrating polymer network hydrogel composed of poly(vinyl alcohol) and star poly[2-(dimethylamino) ethyl methacrylate]. International Journal of Pharmaceutics, 416(1), 104–109. https://doi.org/10.1016/j.ijpharm.2011.06.015

Zhang, C., Chen, J. Da, & Yang, F. Q. (2014). Konjac glucomannan, a promising polysaccharide for OCDDS. Carbohydrate Polymers, 104(1), 175–181. https://doi.org/10.1016/j.carbpol.2013.12.081

Downloads

Additional Files

Published

10-05-2022

Issue

Section

Jurnal Kimia VALENSI, Volume 8, No. 1, May 2022

How to Cite

Improvement of PVA-Glucomanan-Acrylamide Hydrogel as Base Material of Immobilization. (2022). Jurnal Kimia Valensi, 8(1), 1-9. https://doi.org/10.15408/jkv.v8i1.20332