Sintesis dan Karakterisasi Material Komposit Kaolin-ZVI (Zero Valent Iron) serta Uji Aplikasinya sebagai Adsorben Kation Cr (VI)

Irwan Nugraha, Umi Kulsum


Kaolin-ZVI (Zero Valent Iron) composite has been synthesized through reduction method. This study aims to synthesize and investigate the characteristics of kaolin-ZVI composite using X-ray diffraction, infrared absorption and gas adsorption on the surface of these material; the adsorption performance of Kaolin-ZVI composite investigated on ​​adsorbed of Cr (VI). In this study, the Kaolin used is using Indonesian Natural. Kaolin-ZVI Composite synthesized from Fe (III): BH4-ratio was 1: 9 and ZVI ​​the synthesized from Fe (III): BH4-ratio was 1: 2. The results showed that the fraction of kaolin modified with ZVI suffered destruction. Based on the analysis using XRD known that Fe0 formed on kaolin-ZVI, and ZVI; iron compounds such as iron oxide and magnetite maghemit are dominating in the two samples. The results of the analysis using the GSA shows the specific surface area of ​​kaolin, kaolinite-ZVI, and ZVI respectively for 13.29; 58.37; and 40.99 m2/g. The adsorption of Cr (VI) indicate that the kaolin, kaolinite-Zvi, and Zvi can adsorb Cr (VI), respectively 39.87; 70.65; and 132.90 mg/L.



Kaolin; ZVI; adsorption


Blowes DW, Ptacek CJ, Benner SG, Mcrae CWT, Bennett TA, Puls RW. 2000. Treatment of inorganic contaminants using permeable reactive barriers. Journal of Contamination Hydrology. 45: 123–37.

Chang MC, Kang HY. 2009. Remediation of Pyrene-Contaminated soil by synthesized nanoscale zero-valent iron particles. J. Environ. Sci. Health. 44: 576–582.

Dickinson M, Scott TB. 2010. The application of zero valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent. Journal of Hazardous Materials. 178: 171-179.

Ekosse E, George. 2005. Fourier transform infrared spectrophotometry and X-Ray powder diffractometry as complementary techniques in characterizing clay size fraction of kaolin. J. Appl. Sci. Environ. 9(2):43-48.

Fajardo C, Ortíz LT, Rodríguez M, Nande M, Lobo MC, Martin M. 2012. Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: a molecular approach. Chemosphere. 86: 802–808.

Fatimah I. 2014. Adsorpsi dan Katalis Menggunakan Material Berbasis Clay. Graha Ilmu: Yogyakarta.

Grace TJ, Sulungbudi M, Handayani A. 2012. Sintesis Nanopartikel Magnetik Core/Shell Fe/Oksida Fe dengan Metode Reduksi Kimia. Pusat Teknologi Bahan Industri Nuklir (PTBIN-BATAN).

Jiang MQ, Jin XY, Lu XQ, Chen ZL. 2010. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination. 252: 33-39.

Konta J, Clay, Man. 1995. Clay Row Materials in The Service of Man. Appl.Clay Sci. 10(4): 275-335.

Lagaly G. 2006. Colloid Clay Science. dalam: Handbook of Clay Science, Development in Clay Science. vol.1. Eds. Bergaya F, Theng BKG, Lagaly G. Netherland (NL): Elsevier.

Li X, Zhang W. 2007. Sequestration of metal cations with zerovalent iron nanoparticless a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). Journal of Physical Chemistry. 111(19):6939-6946.

Mueller N, Braun J, Bruns J, Cˇerník M, Rissing P, Rickerby D, Nowack B. 2012. Application of nanoscale zero valent iron (nZVI) for groundwater Remediation in Europe. Environ. Sci. Pollut. Res. 19: 550–558.

Mujamilah, Grace TJ, Widan ZL, Salim AA. 2012. Modifikasi Sintesis dan Peningkatan Karakteristik Magnetik Nanopartikel Core/Shell Fe/Oksid Fe Hasil Reaksi Reduksi Borohidrida. Pusat Teknologi Bahan Industri Nuklir (PTBIN)-BATAN.

Murray HH. 2007. Applied Clay Mineralogy. Durham (UK): Duke University Press.

Murray HH. 2004. Structural variations in some kaolinites in relation to dehydrated halloysite. American Mineralogist. 39: 97–108

Panturu RL, Jinescu G, Panturu E, Filcenco-Olteanu A, Radulescu R. 2010. Synthesis and characterization of zero valent iron intended to be used for decontamination Of radioactive water. U.P.B.Sci. Bull. 72: 1454-2331.

Rodiansono, Reda A, Abdullah. 2008. Intercalation of Olygomer of Hidroxyl-Chromium Into Natural Kaolinite. [Skripsi]. Jakarta (ID): University of Lambung Mangkurat.

Sun YP, Li XQ, Cao JS, Zhang WX Wang, HP. 2006. Characterization of zero-valent iron nanoparticles. Adv.Colloid Interface Sci. 120(1-3): 47-56.

Sunardi. 2010. The Study of FTIR, XRD and SEM of Natural Kaolin From Tatakan, South Kalimantan After Purification Process by Sedimentation Methods. [Skripsi]. Jakarta (ID): Universitas Lambung Mangkurat.

Uenosono S, Sonobe A, Sugihara H. 2005. Method for Producing Sponge Iron, and Reduced Iron Powder and Method for Production Thereof. United States Patent. US6918945B2.

Wang J, Liu G, Zhou C, Li T, Liu J. 2014. Synthesis, characterization and aging study of kaolinite-supported zero valent iron nanoparticles and its application for Ni(II) adsorption. Material Research Buletin. 60: 421-431.

Xin Z, Shen L, Zuliang C, Mallavarapu M, Ravendra Naidu. 2011. Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: reactivity, characterization and mechanism. Water research. 45: 3481-3488.

Zhang X, Lin S, Lu XQ, Chen ZL. 2010. Removal of Pb(II) from water using natural kaolin loaded with synthesized nanoscale zero-valent iron. Chem. Eng. J. 163: 243-248.

Zhu H, Jia Y, Wu X, Wang H. 2009. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. Journal of Hazardous Materials. 172: 1591-1596.

Full Text: PDF

DOI: 10.15408/jkv.v3i1.4650


  • There are currently no refbacks.

Copyright (c) 2019 Irwan Nugraha, Umi Kulsum

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.