Hasil In Silico Senyawa Z12501572, Z00321025, SCB5631028 dan SCB13970547 dibandingkan Turunan Zerumbon terhadap Human Liver Glycogen Phosphorylase (1l5Q) sebagai Antidiabetes
Abstract
Human Liver Glycogen Phosphorylase (HLGP), suatu katalis glikogen yang mengontrol pelepasan glukosa-1-fosfat glikogen dari hati. Enzim ini mempunyai peran sentral dalam luaran glukosa hati sehingga menjadi target obat antidiabetik. Kajian docking dilakukan pada komputer dengan prosesor Intel Pentium, RAM 1 GB dan Windows 7. Ligan yang digunakan adalah senyawa obat (Z12501572, Z00321025, SCB5631028 dan SCB13970547), dataset pembanding aktif glycogen phosphorylase outer dimer site (PYGL-out) dan decoysdari www.dekois.com dan turunan zerumbon. Protein dipisahkan dari ligan nativ dan semua ligan beserta protein dikonversi menggunakan PyRx. Visualisasi interaksi ligan-protein dihasilkan dengan program Protein-Ligand Interaction Profiler (PLIP) dan PyMOL. Senyawa ZER11 memiliki binding energy terbaik, yaitu -7.11 kkal/mol (untuk metode LGA dan GA) dan -4.08 kkal/mol untuk metode SA. Nilai binding energy tersebut lebih rendah dari pada nilai untuk ligan native dan satu dari keempat senyawa obat, terlebih jika dibandingkan dengan bindingaffinity dari dataset dan decoys. Interaksi ligan-protein pada ketiga metode tersebut ditemukan sangat bervariasi. Hal berbeda terjadi untuk metode Vina, bindingenergy ZER11 (-9.9 kkal/mol) lebih baik dibandingkan dengan ligan native dan keempat senyawa obat. Senyawa ZER11 memiliki residu interaksi yang sama dengan ligan native pada TRP67 dan LYS191 untuk metode Vina.
Kata kunci: PDBID-1L5Q, AutoDock, docking molekuler, vina, antidiabetes
Abstract
Human Liver Glycogen Phosphorylase (HLGP) can catalyze glycogen and control the release of glucose-1-phosphate of glycogen from the liver. This enzyme has a central role in output rule of liver glucose as it can be used as an antidiabetic drug targets. Docking studies were carried out on PC with Intel Pentium, 1 GB RAM, in environment of Windows 7. Ligands used are drug compounds (Z12501572, Z00321025, SCB5631028 and SCB13970547), the active dataset comparator wasglycogenphosphorylase outer dimer site (PYGL-out) and decoys from www.dekois.com andzerumbonederivates. Protein was separated from its native ligand and all ligands including the protein were converted to pdbqt using PyRx. The interaction of protein-ligand was visualized using software of PLIP and PyMOL. Compound of ZER11 had the best binding energy were -7.11 kcal/mol (LGA and GA) and -4.08 kcal/mol (SA). The binding energy value was lower than the ligand native and one of the four drug compounds, especially compared with the binding affinity of dataset and decoys. Vice versa, for Vina method, the value of ligand binding protein for ZER11 (-9.9 kcal/mol) was better than the ligand native and all of the fourth drugcompounds. Vina result showed that ZER11 had the same residual interaction as the ligand native, which are TRP67 and LYS191.
Keyword: PDBID-1L5Q, AutoDock, molecular docking, vina, antidiabetic
Keywords
References
Baker DJ, Timmons JA, Greenhaff PL. 2005. Glycogen phosphorylase inhibition in type 2 diabetes therapy a systematic evaluation of metabolic and functional effect in rat skeletal muscle. American Diabetes Association. 54(8): 2453-2450.
Dropinski JF, Meinke PT, Shi GQ, Zhang Y. 2010. Antidiabetic Oxazolidinediones and Thiazolidine-diones, United States Patent, No. US 7,807,692 B2. Oct. 5, 2010.
Ekstrom JL, Thomas AP, Maynard DC, Walter CS, Jeff C, Dennis ED, Dennis JH, Judith LT, Michael G, Robert JF, Yasmina SND, David GM, Virginia LR. 2002. Structure-activity analysis of the purine binding site of human liver glycogen phosphorylase. Chemistry & Biology. 9(8): 915–924.
Freeman S, Bartlett JB, Convey S, Hardern I, Teague JL, Loxham SJ, Allen JM, Poucher SM, Charles AD. 2006. Sensitivity of glycogen phosphorylase isoforms to indole site inhibitors is markedly dependent on the activation state of the enzyme, british J. Pharmacology. 149(6): 775-785.
Graves AP, Brenk Ruth, Shoichet BK. 2005. Decoys for Docking. J. Medicinal Chemistry. 48(11): 3714-3728.
Jacob RB, Tim A, Owen MM. 2012. Accessible high-throughput virtual screening molecular docking software for students and educators. PLoS Computational Biology. 8(1): 1-5.
Kastritis PL, Bonvin AMJJ. 2012. On the binding affinity of macromolecular interactions: daring to ask why proteins interact. Journal of the Royal Society. 10(20120835): 1-27.
Morris GM, Lim-Wilby M. 2008. Molecular docking. Methods MolBiol. 443: 365-382.
Norgan AP, Coffman PK, Kocher Jean-Pierre A, Katzmann DJ, Sosa CP. 2011. Multilevel parallelization of autodock 4.2. J. Cheminformatics. 3(12).
Rath VL, Ammirati M, Danley DE, Ekstrom JL, Gibbs EM, Hynes TR, Mathiowetz AM, McPherson RK, Olson TV, Treadway JL, Hoover DJ. 2000. Human liver glycogen phosphorylase inhibitors bind at a new allosteric site. Chemistry & Biology. 7(9): 677-682.
Sakika KA, Hanwar D, Suhendi A, Ika Trisharyanti IDK, Santoso B. 2014. Aktivitas Antidiabetes Ekstrak Etanol Rimpang Lempuyang Emprit (Zingiber Amaricans Bl) pada Tikus Putih yang Diinduksi Aloksan. Prosiding Seminar Nasional "Perkembangan Terbaru Pemanfaatan Herbal Sebagai Agen Preventif Pada Terapi Kanker". Universitas Wahid Hasyim, Semarang, ISBN: 978-602-19556-1-1.
Santoso B, Hanwar D, Suhendi A. 2015. Prediksi 3D-Molekular Aktivitas Turunan Senyawa Polihidroksi Zerumbon terhadap Glikogen Sintase Kinase-3 Beta (GSK-3) Menggunakan DOCK6, Prosiding Seminar Nasional URECOL 2 Semarang.
DOI: 10.15408/jkv.v2i2.4170
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Fitri Kusvila Aziz, Cantika Nukitasari, Fauziyah Ardli Oktavianingrum, Lita Windy Aryati, Broto Santoso
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.