Nonenzymatic Sensor Based on Glassy Carbon Electrode Modified by Platinum Nanoparticles Decorated Reduced Graphene Oxide for Glucose Detection in Human Urine
Abstract
This research aims to develop a sensitive and selective nonenzymatic electrochemical sensor for glucose detection using a glassy carbon electrode modified with platinum nanoparticles (PtNPs) decorated on reduced graphene oxide (RGO). The structural properties and surface morphology of PtNPs/RGO composite were characterized using Raman spectroscopy and scanning electron microscopy (SEM). In addition, cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques were employed to investigate glucose measurements in human urine samples. The developed sensor shows an increasing anodic peak of glucose with a linear response at a concentration range from 10 to 1000 µM, with a detection limit of 5 µM. The proposed sensor also demonstrated good reproducibility, indicated by the value of relative standard deviation (%RSD) of 3.9%, and maintained its current response over seven consecutive measurements. Moreover, the proposed sensor exhibited high selectivity for glucose detection against several potential interferences, such as potassium (K+), chloride (Cl−), magnesium (Mg2+), ascorbic acid, dopamine, and urea, with recovery values of 96-102%, which are acceptable within the analytical range. Furthermore, this proposed sensor successfully detected glucose in human urine samples, and their concentrations were not significantly different when measured with a commercial glucose sensor.
Keywords
References
Tang L, Chang SJ, Chen CJ, Liu JT. Non-invasive blood glucose monitoring technology: A review. Sensors (Switzerland). 2020;20(23):1-32. doi:10.3390/s20236925
Bruen D, Delaney C, Florea L, Diamond D. Glucose sensing for diabetes monitoring: Recent developments. Sensors (Switzerland). 2017;17(8). doi:10.3390/s17081866
Oliver JD, Rosser AA, Fellows CM, et al. Understanding and improving direct UV detection of monosaccharides and disaccharides in free solution capillary electrophoresis. Anal Chim Acta. 2014;809:183-193. doi:10.1016/j.aca.2013.12.001
Chen X, Chen J, Wang F, et al. Determination of glucose and uric acid with bienzyme colorimetry on microfluidic paper-based analysis devices. Biosens Bioelectron. 2012;35(1):363-368. doi:10.1016/j.bios.2012.03.018
Prasad SN, Weerathunge P, Karim N, et al. Non-invasive detection of glucose in human urine using a color-generating copper NanoZyme. Published online 2021:1279-1291.
Yang D, Luo M, Di J, Tu Y, Yan J. Gold nanocluster-based ratiometric fluorescent probes for hydrogen peroxide and enzymatic sensing of uric acid. Microchimica Acta. 2018;185(6). doi:10.1007/s00604-018-2823-5
Serafim JA, Silveira RF, Vicente EF. Fast Determination of Short-Chain Fatty Acids and Glucose Simultaneously by Ultraviolet/Visible and Refraction Index Detectors via High-Performance Liquid Chromatography. Food Anal Methods. 2021;14(7):1387-1393. doi:10.1007/s12161-021-01990-w
Anderson K, Poulter B, Dudgeon J, Li SE, Ma X. A highly sensitive nonenzymatic glucose biosensor based on the regulatory effect of glucose on electrochemical behaviors of colloidal silver nanoparticles on MoS2. Sensors (Switzerland). 2017;17(8). doi:10.3390/s17081807
Ayranci R, Demirkan B, Sen B, Aysun Ş, Ak M, Fatih Ş. Materials Science & Engineering C Use of the monodisperse Pt / Ni @ rGO nanocomposite synthesized by ultrasonic hydroxide assisted reduction method in electrochemical nonenzymatic glucose detection. 2019;99(February):951-956. doi:10.1016/j.msec.2019.02.040
Soleh A, Kanatharana P, Thavarungkul P, Limbut W. Novel electrochemical sensor using a dual-working electrode system for the simultaneous determination of glucose, uric acid and dopamine. Microchemical Journal. 2020;153(August 2019):104379. doi:10.1016/j.microc.2019.104379
Golsanamlou Z, Mahmoudpour M, Soleymani J, Jouyban A. Applications of Advanced Materials for Non-Enzymatic Glucose Monitoring: From Invasive to the Wearable Device. Crit Rev Anal Chem. 2023;53(5):1116-1131. doi:10.1080/10408347.2021.2008227
Franco FF, Hogg RA, Manjakkal L. Cu2 O-Based Electrochemical Biosensor for Non-Invasive and Portable Glucose Detection. Biosensors (Basel). 2022;12(3):1-11. doi:10.3390/bios12030174
Singh B, Laffir F, McCormac T, Dempsey E. PtAu/C based bimetallic nanocomposites for non-enzymatic electrochemical glucose detection. Sens Actuators B Chem. 2010;150(1):80-92. doi:10.1016/j.snb.2010.07.039
Gao J, He S, Nag A. Electrochemical detection of glucose molecules using laser-induced graphene sensors: A review. Sensors. 2021;21(8). doi:10.3390/s21082818
Hassan MH, Vyas C, Grieve B, Bartolo P. Recent advances in enzymatic and non-enzymatic electrochemical glucose sensing. Sensors. 2021;21(14). doi:10.3390/s21144672
Wang F, Shi F, Li J, et al. Cu microspheres decorated ZnO@CNT/Carbon cloth flexible biosensor for simultaneous determination of glucose and uric acid. Microchemical Journal. 2023;193(July):109054. doi:10.1016/j.microc.2023.109054
Lee H, Hong YJ, Baik S, Hyeon T, Kim DH. Enzyme-Based Glucose Sensor: From Invasive to Wearable Device. Adv Healthc Mater. 2018;7(8):1-14. doi:10.1002/adhm.201701150
Shokrekhodaei M, Quinones S. Review of non‐invasive glucose sensing techniques: Optical, electrical and breath acetone. Sensors (Switzerland). 2020;20(5). doi:10.3390/s20051251
Xu L, Zhao R, Zhao Y, et al. Genetic and clinical characterization of familial renal glucosuria. Clin Kidney J. 2024;17(2). doi:10.1093/ckj/sfad265
Russell WR, Baka A, Björck I, et al. Impact of Diet Composition on Blood Glucose Regulation. Crit Rev Food Sci Nutr. 2016;56(4):541-590. doi:10.1080/10408398.2013.792772
Baig N, Sajid M, Saleh TA. SC. Trends in Analytical Chemistry. Published online 2018. doi:10.1016/j.trac.2018.11.044
Hwang DW, Lee S, Seo M, Chung TD. Recent advances in electrochemical non-enzymatic glucose sensors – A review. Anal Chim Acta. 2018;1033:1-34. doi:10.1016/j.aca.2018.05.051
Toghill KE, Compton RG. Electrochemical non-enzymatic glucose sensors: A perspective and an evaluation. Int J Electrochem Sci. 2010;5(9):1246-1301. doi:10.1016/s1452-3981(23)15359-4
Woo H, Lee HJ, Yook JG. Noninvasive Detection of Glucose and NaCl Solutions With Environment Correction Using a Dual IDC-Based Microwave Sensor. IEEE Sens J. 2024;24(12):19039-19049. doi:10.1109/JSEN.2024.3390544
Lee SJ, Sung YG, Kesavan S, Kim CL. Development of highly sensitive/durable porous carbon nanotube–polydimethylsiloxane sponge electrode for wearable human motion monitoring sensor. New J Chem. 2024;48(5):2146-2154. doi:10.1039/D3NJ04802K
Mohamad Nor N, Ridhuan NS, Abdul Razak K. Progress of Enzymatic and Non-Enzymatic Electrochemical Glucose Biosensor Based on Nanomaterial-Modified Electrode. Biosensors (Basel). 2022;12(12). doi:10.3390/bios12121136
Naikoo GA, Salim H, Hassan IU, et al. Recent Advances in Non-Enzymatic Glucose Sensors Based on Metal and Metal Oxide Nanostructures for Diabetes Management- A Review. Front Chem. 2021;9. doi:10.3389/fchem.2021.748957
Dhara K, Mahapatra DR. Electrochemical Nonenzymatic Sensing of Glucose Using Advanced Nanomaterials. Vol 185. Microchimica Acta; 2018. doi:10.1007/s00604-017-2609-1
Xie F, Yang M, Jiang M, Huang XJ, Liu WQ, Xie PH. Carbon-based nanomaterials – A promising electrochemical sensor toward persistent toxic substance. TrAC - Trends in Analytical Chemistry. 2019;119. doi:10.1016/j.trac.2019.115624
Ismail MS, Yusof N, Mohd Yusop MZ, et al. Synthesis and characterization of graphene derived from rice husks. Malaysian Journal of Fundamental and Applied Sciences. 2019;15(4):516-521. doi:10.11113/mjfas.v15n4.1228
Asif M, Aziz A, Wang H, et al. Superlattice stacking by hybridizing layered double hydroxide nanosheets with layers of reduced graphene oxide for electrochemical simultaneous determination of dopamine, uric acid and ascorbic acid. Microchimica Acta. 2019;186(2). doi:10.1007/s00604-018-3158-y
Putra BR, Nisa U, Heryanto R, et al. A facile electrochemical sensor based on a composite of electrochemically reduced graphene oxide and a PEDOT:PSS modified glassy carbon electrode for uric acid detection. Analytical Sciences. 2022;38(1):157-166. doi:10.2116/analsci.21P214
Akhavan O, Bijanzad K, Mirsepah A. Synthesis of graphene from natural and industrial carbonaceous wastes. RSC Adv. 2014;4(39):20441-20448. doi:10.1039/c4ra01550a
Habte AT, Ayele DW, Hu M. Synthesis and Characterization of Reduced Graphene Oxide (rGO) Started from Graphene Oxide (GO) Using the Tour Method with Different Parameters. Advances in Materials Science and Engineering. 2019;2019(Vc). doi:10.1155/2019/5058163
Sasaki KI, Tokura Y, Sogawa T. The origin of Raman D band: Bonding and antibonding orbitals in graphene. Crystals (Basel). 2013;3(1):120-140. doi:10.3390/cryst3010120
Bîru EI, Iovu H. Graphene Nanocomposites Studied by Raman Spectroscopy. Raman Spectroscopy. Published online 2018. doi:10.5772/intechopen.73487
Gurunathan S, Jeyaraj M, Kang MH, Kim JH. Graphene oxide-platinum nanoparticle nanocomposites: A suitable biocompatible therapeutic agent for prostate cancer. Polymers (Basel). 2019;11(4). doi:10.3390/polym11040733
Botello LE, Schönig M, Solla-Gullón J, Climent V, Feliu JM, Schuster R. Direct measurement of the hydrogen adsorption entropy on shape-controlled Pt nanoparticles using electrochemical microcalorimetry. J Mater Chem A. 2024;12(1):184-191. doi:10.1039/D3TA04937J
Saravanan G, Mohan S. Pt nanoparticles embedded on reduced graphite oxide with excellent electrocatalytic properties. Appl Surf Sci. 2016;386:96-102. doi:10.1016/j.apsusc.2016.05.152
Mazzotta E, Caroli A, Primiceri E, Monteduro AG, Maruccio G, Malitesta C. All-electrochemical approach for the assembly of platinum nanoparticles/polypyrrole nanowire composite with electrocatalytic effect on dopamine oxidation. Journal of Solid State Electrochemistry. 2017;21(12):3495-3504. doi:10.1007/s10008-017-3693-1
Wang P, Olbricht WL. Study on electrodeposition of Pt. Surface Engineering. 2011;27(9):662-670. doi:10.1179/1743294410Y.0000000007
Kokoskarova P, Stojanov L, Najkov K, et al. Square-wave voltammetry of human blood serum. Sci Rep. 2023;13(1). doi:10.1038/s41598-023-34350-1
Yang QQ, He S, Zhang YL, et al. A colorimetric sensing strategy based on chitosan-stabilized platinum nanoparticles for quick detection of α-glucosidase activity and inhibitor screening. Anal Bioanal Chem. Published online February 15, 2024. doi:10.1007/s00216-024-05198-9
Bard AJ., Faulkner LR. Electrochemical Methods : Fundamentals and Applications. John Wiley & Sons, Inc.; 2001.
Kumar MA, Lakshminarayanan V, Ramamurthy SS. Platinum nanoparticles–decorated graphene-modified glassy carbon electrode toward the electrochemical determination of ascorbic acid, dopamine, and paracetamol. Comptes Rendus Chimie. 2019;22(1):58-72. doi:10.1016/j.crci.2018.09.015
Ma W, Hu K, Chen Q, Zhou M, Mirkin M V., Bard AJ. Electrochemical Size Measurement and Characterization of Electrodeposited Platinum Nanoparticles at Nanometer Resolution with Scanning Electrochemical Microscopy. Nano Lett. 2017;17(7):4354-4358. doi:10.1021/acs.nanolett.7b01437
Danaee I, Jafarian M, Forouzandeh F, Gobal F. Kinetic studies of glucose electrocatalytic oxidation on GC/Ni electrode. Int J Chem Kinet. 2012;44(11):712-721. doi:10.1002/kin.20721
Karim-Nezhad G, Hasanzadeh M, Saghatforoush L, Shadjou N, Earshad S, Khalilzadeh B. Kinetic Study of Electrocatalytic Oxidation of Carbohydrates on Cobalt Hydroxide Modified Glassy Carbon Electrode. J Braz Chem Soc. 2009;20(1):141-151. doi:10.1590/S0103-50532009000100022
Calcagno D, Perina ML, Zingale GA, et al. Detection of insulin oligomeric forms by a novel surface plasmon resonance-diffusion coefficient based approach. Protein Science. 2024;33(4):e4962. doi:https://doi.org/10.1002/pro.4962
Wu M, Li L, Yu R, et al. Tailored diffusion limiting membrane for microneedle glucose sensors with wide linear range. Talanta. 2024;273:125933. doi:https://doi.org/10.1016/j.talanta.2024.125933
Moldenhauer J, Meier M, Paul DW. Rapid and Direct Determination of Diffusion Coefficients Using Microelectrode Arrays. J Electrochem Soc. 2016;163(8):H672-H678. doi:10.1149/2.0561608jes
Yin W. Urine Glucose Levels Are Disordered Before Blood Glucose Levels Increase In Zucker Diabetic Fatty Rats. Published online 2017. doi:10.1101/122283
Boorsma EM, Beusekamp JC, ter Maaten JM, et al. Effects of empagliflozin on renal sodium and glucose handling in patients with acute heart failure. Eur J Heart Fail. 2021;23(1):68-78. doi:10.1002/ejhf.2066
Wahyuni WT, Safitri H, Rohaeti E, Khalil M, Putra BR. A Novel Approach to Fabricating a Screen-Printed Electrode Based on a Gold Nanorod–Graphene Oxide Composite for the Detection of Uric Acid †. Engineering Proceedings. 2023;48(1):1-9. doi:10.3390/CSAC2023-14908
Wei G, Xu F, Li Z, Jandt KD. Protein-promoted synthesis of Pt nanoparticles on carbon nanotubes for electrocatalytic nanohybrids with enhanced glucose sensing. Journal of Physical Chemistry C. 2011;115(23):11453-11460. doi:10.1021/jp202324q
Kogularasu S, Lee YY, Chang-Chien GP, Chen PY, Govindasamy M. A Novel Synthesis of Nickel Carbide Modified Glassy Carbon Electrode for Electrochemical Investigation of Archetypal Diabetes Biomarker in Human Serum and Urine Samples. J Electrochem Soc. 2024;171(4):47512. doi:10.1149/1945-7111/ad3a21
M. P. A, R. A, Haridas S. Selective and sensitive non-enzymatic detection of glucose by Cu(ii)–Ni(ii)/SBA-15. New J Chem. 2024;48(12):5326-5333. doi:10.1039/D4NJ00039K
Bano M, Naikoo GA, BaOmar F, et al. Revolutionizing Glucose Monitoring: Enzyme-Free 2D-MoS2 Nanostructures for Ultra-Sensitive Glucose Sensors with Real-Time Health-Monitoring Capabilities. ACS Omega. 2024;9(18):20021-20029. doi:10.1021/acsomega.3c10117
Mekersi M, Ferkhi M, Kuyumcu Savan E. Electrochemical biodetection of glucose using La0.6Sr0.4Co0.8Fe0.2O3 and La1,7Sr0,3CuO4 Nano-Particles modified with black carbon deposited on glassy carbon electrode. Microchemical Journal. 2023;194:109346. doi:https://doi.org/10.1016/j.microc.2023.109346
Sun E, Gu Z, Li H, Liu X, Li Y, Xiao F. Flexible Graphene Paper Modified Using Pt&Pd Alloy Nanoparticles Decorated Nanoporous Gold Support for the Electrochemical Sensing of Small Molecular Biomarkers. Biosensors (Basel). 2024;14(4). doi:10.3390/bios14040172
Bhuvaneswari C, Elangovan A, Sudhan N, et al. A low-cost hybrid GQDs/Fe3O4/polypyrrole nanocomposite based chemo-sensor for electrochemical non-enzymatic selective determination of creatinine in biological samples. Microchemical Journal. 2023;194:109259. doi:https://doi.org/10.1016/j.microc.2023.109259
Rashed MdA, Nayem N, Rahman MH, et al. A sensitive, selective non-enzymatic electrochemical detection and kinetic study of glucose over Pt nanoparticles/SWCNTs/NiO ternary nanocomposite. J Taiwan Inst Chem Eng. 2023;151:105113. doi:https://doi.org/10.1016/j.jtice.2023.105113
DOI: 10.15408/jkv.v10i2.40035
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Ulfiatun Nisa, Dyah Iswantini, Budi Riza Putra, Mohd Muzamir Mahat, Shahrul Nizam Ahmad, Dinda Iryawati Bedy Saskito, Wulan Tri Wahyuni
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.