Synthesis and Characterization of Bioplastic from Macroalgae Padina australis
Abstract
Synthetic plastics are one of the more significant contributors to waste in the environment. Bioplastic is a type of plastic that is environmentally friendly because it is made from biomass. In this study. brown macroalgae. Padina australis. is one of the potential raw materials found in large quantities in Indonesian waters and used to produce bioplastics with filtration technique. The aim of this study was to synthesis bioplastics using P. australis alginate with glycerol plasticizer.The alginate macroalgae were mixed with glycerol as a plasticizer in the following proportions: 1:15. 1:25. 2:15. and 2:25. with the quality determined through tensile strength measurements. water solubility. and degradation time. On day 12. the tensile strength of P. australis bioplastic was 3.24-7.33 MPa. the water solubility was 61.79-65.19%. and the biodegradability rate was 0.1-20.0%. When the macroalgae alginate and glycerol formulation was 2:25. the best bioplastic film produced had a tensile strength of 7.33 MPa and a water solubility of 61.79%. which was lower than the Indonesia National Standard number 7818/2016 for bioplastic products. P. australis. however. has the potential to be a promising alternative bioplastic product that contributes to the reduction of petroleum-based plastic pollution in the environment. Furthermore. as a preliminary study. it will be improved to meet industrial standards or find the products that match these characteristics.
Keywords
References
Mardiansyah, Prasetyo, D., & Putri, L. S. E. (2021). Cuttlefish (Sepia pharaonis Ehrenberg, 1831) as a bioindicator of microplastic pollution. AACL Bioflux, 14(2), 918-930.
Mardiansyah, Utomo, A. B., & Putri, L. S. E. (2022). Microplastics in grouper fish (Genera Epinephelus) gastrointestinal tract from Pramuka Island, Seribu Islands, Indonesia. Journal of Ecological Engineering, 23(3), 194-205.
Central Bureau of Statistics of Republic of Indonesia. (2019). Indonesia Environmental Statistics.
Central Bureau of Statistics of Republic of Indonesia. (2021). Indonesia Environmental Statistics.
Lim, J. Y., Hii, S. L., Chee, S. Y., & Wong, C. L. (2018). Sargassum siliquosum J. Agardh extract as potential material for synthesis of bioplastic film. Journal of Applied Phycology, 30(6), 3285–3297.
Rahman, R., Sood, M., Gupta, N., Bandral, J. D., Hameed, F., & Ashraf, S. (2019).Bioplastics for food packaging: A review. International Journal of Current Microbiology and Applied Sciences, 8 (3), 2311–2321.
Asrofi, M., Sapuan, S. M., Ilyas, R. A., & Ramesh, M. (2020). Characteristic of composite bioplastics from tapioca starch and sugarcane bagasse fiber: Effect of time duration of ultrasonication (Bath-Type). Materials Today: Proceedings, 46.
Park, Y. K., & Lee, J. (2022). Achievements in the production of bioplastics from microalgae. Phytochemistry Reviews, 8, 1–19.
Samer, M., Khalefa, Z., Abdelall, T., Moawya, W., Farouk, A., Abdelaziz, S., Soliman, N., Salah, A., Gomaa, M., & Mohamed, M. (2019). Bioplastics production from agricultural crop residues. Agricultural Engineering International: CIGR Journal, 21(3), 190-194.
Abdul Khalil, H. P. S., Saurabh, C. K., Tye, Y. Y., Lai, T. K., Easa, A. M., Rosamah, E., Fazita, M. R. N., Syakir, M. I., Adnan, A. S., Fizree, H. M., Aprilia, N. A. S., & Banerjee, A. (2017). Seaweed based sustainable films and composites for food and pharmaceutical applications: A review. Renewable and Sustainable Energy Reviews, 77, 353–362.
Tavassoli-Kafrani E., Shekarchizadeh H., and M.-B. M. (2016). Development of edible films and coatings from alginates and carrageenan. Carbohydr. Polym., 137, 360-374.
Alba, K., & Kontogiorgos, V. (2019). Seaweed polysaccharides (agar, alginate carrageenan). In Encyclopedia of Food Chemistry (pp. 240–250). Elsevier.
Dasumiati, N. Saridewi, & M. Malik. (2019). Food packaging development of bioplastik frombasic waste of cassava peel (Manihot uttilisima) and shrimp shell. IOP Conf. Series: Materials Science and Engineering, 602, 1-9.
Sinaga R.F., Ginting G.M., Ginting M.H., and Hasibuan R. (2014). Effect of glycerol on tensile strength and elongation of bioplastics from taro tuber starch. Jurnal Teknik Kimia, 3 (2), 19-24.
Saputro, A. N. C. & Ovita, A. L. (2017). Synthesis and bioplastic characteristics of chitosan-canna starch (Canna edulis). JKPK, 12 (1), 13-21, 2017.
Kamsiati, E., Herawati, H., & Purwani E. Y. (2017). Potential development of biodegradable plastics based on sago starch and cassava in Indonesia. Jurnal Litbang Pertanian, 36 (2), 67-76.
Jabbar, U. F. (2017). Effect of chitosan on bioplastic characteristics of potato peel starch (Solanum tuberosum L). BSc, State Islamic University Alauddin, Makassar.
Agustin, Y. E. & Padmawijaya, K. S. (2016). Synthesis of bioplastics from chitosan-starch of kepok banana peels with the addition of additives. Journal of Chemical Engineering, 10 (2), 40-48.
Sari N., Mairisya M., Kurniasari R., and Purnavita S. (2019). Galactomannan-based bioplastics extracted from coconut dregs with a mixture of polyvinyl alcohol methane. Media Komunikasi Rekayasa Proses dan Teknologi Tepat Guna, 15 (2), 71-78.
Presidential Decree Republic of Indonesia No. 33. (2019). The 2018-2021 National Seaweed Industry Development Road Map.
Nurjanah, N., Anwar, E., Suwandi, R., & Hidayat, T. (2017). Kandungan senyawa bioaktif rumput laut Padina australis dan Eucheuma cottoni sebagai bahan baku krim tabir surya. Jurnal Pengolahan Hasil Perikanan Indonesia, 20(1): 10-17.
Dewi N.L.G.S., Ahmadi B., and Hartiati A. (2017). Alginate bioplastic characteristics of the seaweed Ulva lactuca. Journal of Agroindustrial Engineering and Management, 5 (3), 66–73.
Dwiwahyu, E.R., Suryani, M., Dwi, R.W., & Rohaeti E. (2008). Utilization of alginate from brown algae (Sargassum sp.) for the production of biodegradable plastic. Lamp, 3 (1), 70-81.
Akbar, S. Y. (2016). Physical and mechanical characteristics of bioplastics from mixing red algae (Gracilaria sp.) with latex. BSc. Thesis, Faculty of Engineering, Syiah Kuala University, Banda Aceh.
Putri, G. R. (2019). Bioplastic characterization of seaweed Euchema cottonii and cassava starch with the addition of avocado seed starch. Risenologi, 4 (2), 59-64.
Anward, A., Hidayat, Y., & Rokhati, N. (2013). Effect of concentration and addition of glycerol on the characteristics of alginate and chitosan films. Journal of Chemical and Industrial Technology, 2 (3), 51–56.
Solak, A. O. & Dyankova, S. M. (2014). Composite films from sodium alginate and high methoxyl pectin-physicochemical properties and biodegradation in soil. Ecologia Balkanica, vol. 6, no. 2, pp. 25–34.
Salosso, Y., & Jasmanindar, Y. (2018). Diversity of brown macroalgae in kupang bay waters and alginate content potential and its phytochemistry. AACL Bioflux, 11(3), 598–605.
Santana, I., Félix, M., Guerrero, A., & Bengoechea, C. (2022). Processing and characterization of bioplastics from the invasive seaweed Rugulopteryx okamurae. Polymers, 14(355), 1-17.
Wahyuningtyas, N.E. & Suryanto, H. Analysis of biodegradation of bioplastics made of cassava starch. JMEST, 1(1), 41-54
Langit, N. T. P., Ridlo, A., & Subagiyo, S. (2019). Pengaruh konsentrasi alginat dengan gliserol sebagai plasticizer terhadap sifat fisik dan mekanik bioplastik. Journal of Marine Research, 8(3), 314–321.
Yudistriani, S.A., Susanty, Deddy, R., & Hamany.(2019). The effect of variations in the concentration of glycerol from used cooking oil on the test value of bioplastics from the utilization of soybean husk waste. Journal of Conversion, 8 (1), 55–60.
Nurfajrin, Z. D., Mahendra, G. S., Sukadarti, S., & Sulistyowati, E. (2015). Karakterisasi dan sifat Biodegradasi edible film dari pati kulit pisang nangka (Musa Paradisiaca L.) dengan penambahan kitosan dan plasticizer gliserol. Prosiding Seminar Nasional Teknik Kimia “Kejuangan,” 1–7.
Purnavita, S., Subandriyo, D. Y., & Anggraeni, A. (2020). Penambahan gliserol terhadap karakteristik bioplastik dari komposit pati aren dan glukomanan. Metana, 16(1), 19–25.
Kok, J. M. L., & Wong, C. L. (2018). Physicochemical properties of edible alginate film from Malaysian Sargassum polycystum C. Agardh. Sustainable Chemistry and Pharmacy, 9(July), 87–94.
Adhikari, D., Mukai, M., Kubota, K., Kai, T., Kaneko, N., Araki, K. S., & Kubo, M. (2016). Degradation of bioplastics in soil and their degradation effects on environmental microorganisms. Journal of Agricultural Chemistry and Environment, 05(01), 23–34.
Safitri, I., Riza, M., & Syaubari, S. (2016). Uji mekanik plastik biodegradable dari pati sagu dan grafting poly (nipam)-kitosan dengan penambahan minyak kayu manis (Cinnamomum burmannii) sebagai antioksidan. Jurnal Litbang Industri, 6(2), 107-116.
DOI: 10.15408/jkv.v9i2.32906
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Lily Surayya Eka Putri
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.