The Potential of Nanocellulose Acetate as Surfactant for Water-Vegetable Oil Systems

Ikhsan Ibrahim, Mia Ledyastuti


Indonesia, as an agricultural country, has a variety of abundant plants. Cellulose is a component in plants that can be modified to increase its economic value. Resizing cellulose to nanocellulose and modification of nanocellulose to nanocellulose acetate can increase its potential as a surfactant. Resizing cellulose can be done using the strong acid hydrolysis method. An acetic anhydride reagent was utilized to convert the surface hydroxyl functional group into acetyl. The successful production and modification of nanocellulose were confirmed using fourier transform infrared and particle size analysis characterization. The infrared absorption spectrum of cellulose and nanocellulose showed no difference in peaks. Particle size distribution showed that nanocellulose I (CNC I) and nanocellulose II (CNC II) has sizes of 142 nm and 319 nm, respectively. The property of nanocellulose molecules in an oil-water system was simulated using molecular dynamics with GROMACS 2020.6 software. Appropriate trends can be seen in the interfacial tension of water-vegetable oil systems. The value of interfacial tension decreases with the addition of nanocellulose acetate compared to the addition of nanocellulose. With the agreement between the experimental and computational results, nanocellulose acetate can act as a surfactant.


Nanocellulose; computational method; surfactant


Alojaly, H., Benyounis, K. Y. (2020). Packaging With Plastics and Polymeric Materials. Reference Module in Materials Science and Materials Engineering.

Assadi, Y., Farajzadeh, M. A., Bidari, A. (2012). Dispersive Liquid–Liquid Microextraction. Comprehensive Sampling and Sample Preparation, 2, 181–212.

Bergfreund, J., Siegenthaler, S., Lutz-Bueno, V., Bertsch, P., Fischer, P. (2021). Surfactant Adsorption to Different Fluid Interfaces. Langmuir, 37(22), 6722–6727.

Brinchi, L., Cotana, F., Fortunati, E., Kenny, J. M. (2013). Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydrate Polymers, 94(1), 154–169.

Deepashree, C. L., Kumar, J., Prasad, A. G. D., Zarei, M., Gopal, S. (2013). FTIR spectroscopic studies on cleome gynandra – comparative analysis of functional group before and after extraction. Romanian Journal of Biophysics, 22, 137–143.

Dewi, A. M. P., Edowai, D. N., Pranoto, Y., Darmadji, P. (2018). Sintesis nanoselulosa asetat dari ampas sagu dengan metode electrospinning. Prosiding Seniar Nasional Sains dan Teknologi. 31–36. DOI:

Dewi, A. M. P., Kusumaningrum, M. Y., Edowai, D. N., Pranoto, Y., Darmadji, P. (2017). Ekstraksi Dan Karakterisasi Selulosa Dari Limbah Ampas Sagu. 1. Retrieved from

Douglas A. Skoog, F. James Holler, S. R. C. (2018). Principles of Instrumental Analysis (seven). United States of America. Retrieved from

Fallacara, A., Baldini, E., Manfredini, S., Vertuani, S. (2018). Hyaluronic acid in the third millennium. Polymers, 10(7).

Filson, P. B., Dawson-Andoh, B. E., Schwegler-Berry, D. (2009). Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chemistry, 11(11), 1808–1814.

French, A. D. (2014). Idealized powder diffraction patterns for cellulose polymorphs. Cellulose, 21(2), 885–896.

Gero, A., Markham, J. J. (1951). Studies on pyridines: I. The basicity of pyridine bases. Journal of Organic Chemistry, 16(12), 1835–1838.

Gong, J., Li, J., Xu, J., Xiang, Z., Mo, L. (2017). Research on cellulose nanocrystals produced from cellulose sources with various polymorphs. RSC Advances, 7(53), 33486–33493.

Grabowski, S. J. (2020). Understanding Hydrogen Bonds. Royal Society of Chemistry.

Waluyom, J. (2009). Pemanfaatan Limbah Biomassa sebagai Bahan Pembuatan Pakan Lembaga Ilmu Pengetahuan Indonesia. Retrieved January 11, 2022, from Prosiding Lokakarya Grassroot Innovation (GRI) BBPTTG-LIPI website:

Kasdi. (2019). Pembangunan Perkebunan di Era Industri 4.0. Retrieved March 22, 2021, from

Klein, D. (2017). Organic chemistry (S. Bruno, Ed.). John Wiley & Sons, Inc.

Klemm, D., Philipp, B., Heinze, T., Heinze, U., & Wagenknecht, W. (1998). Comprehensive Cellulose Chemistry. In Comprehensive Cellulose Chemistry. Wiley.

Krishni, R., Foo, K. Y., Hameed, B. (2013). Adsorptive removal of methylene blue using the natural adsorbent-banana leaves. Desalination and Water Treatment, 52, 6104–6112.

Ledyastuti, M., Jason, J., Aditama, R. (2021). Effect of nanocellulose on water-oil interfacial tension. Key Engineering Materials, 874 KEM, 13–19.

Lee, H. V., Hamid, S. B. A., Zain, S. K. (2014). Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process. Scientific World Journal, 2014, 1–20.

Mandal, A., Chakrabarty, D. (2011). Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydrate Polymers, 86(3), 1291–1299.

Moldes, A., Vecino, X., Rodríguez-López, L., Rincón-Fontán, M., Cruz, J. M. (2020). Biosurfactants: The use of biomolecules in cosmetics and detergents. New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Biomolecules: Properties, Relevance, and Their Translational Applications, 163–185.

Nelson, D. L., Cox, M. M. (2008). Principles Of Biochemistry (5th ed.). New York: Sara Tenney.

Ning, L., You, C., Zhang, Y., Li, X., Wang, F. (2020). Synthesis and biological evaluation of surface-modified nanocellulose hydrogel loaded with paclitaxel. Life Sciences, 241, 117137.

Ningtyas, K. R., Muslihudin, M., Sari, I. N. (2020). Sintesis nanoselulosa dari limbah hasil pertanian dengan menggunakan variasi konsentrasi asam synthesis of nanoselulosa from agricultural waste using variation acid concentration. Jurnal Penelitian Pertanian Terapan, 20(2), 142–147.

Parrinello, M., Rahman, A. (1998). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182.

Rosen, M. J. (2004). Surfactants And Interfacial Phenomena. New Jersey.: John Wiley & Sons, Inc.

Sha, W., Wu, X., Keong, K. G. (2011). Molecular dynamics (MD) simulation of the diamond pyramid structure in electroless copper deposits. Electroless Copper and Nickel–Phosphorus Plating, 82–103.

Shankaran, D. R. (2018). Chapter 14 - Cellulose Nanocrystals for Health Care Applications. In S. Mohan Bhagyaraj, O. S. Oluwafemi, N. Kalarikkal, & S. Thomas (Eds.), Applications of Nanomaterials (pp. 415–459). Woodhead Publishing.

Farmer, S., Clark, J. (2022). Map: Organic Chemistry (Smith).

Sukmarani, G., Ledyastuti, M. (2019). The Properties of Microcellulose as Enhanced Oil Recovery Agent. Journal of Physics: Conference Series, 1245(1).

Terinte, N., Ibbett, R., Schuster, K. C. (2017). Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction ( WAXD ): Comparison between measurement techniques Overview On Native Cellulose And Microcrystalline Cellulose I Structure Studied By X-Ray Diffraction. (January 2011).

Voronova, M. I., Surov, O. V., Zakharov, A. G. (2013). Nanocrystalline cellulose with various contents of sulfate groups. Carbohydrate Polymers, 98(1), 465–469.

Wulandari, W. T., Rochliadi, A., Arcana, I. M. (2016). Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. IOP Conference Series: Materials Science and Engineering, 107(1).

Xiong, R., Zhang, X., Tian, D., Zhou, Z., Lu, C. (2012). Comparing microcrystalline with spherical nanocrystalline cellulose from waste cotton fabrics. Cellulose, 19.

Zhang, X.-J. (2013). Van der Waals Forces. Encyclopedia of Tribology, 3945–3947.

Full Text: PDF

DOI: 10.15408/jkv.v9i1.29467


  • There are currently no refbacks.

Copyright (c) 2023 Mia Ledyastuti

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.