Plastic Composites Using Mango Leaf Waste for Cost Effectiveness and Green Environment
Abstract
Keywords
References
Abdullah, M. Z., & Aslan, N. H. C. (2019). Performance evaluation of composite from recycled polypropylene reinforced with mengkuang leaf fiber. Resources, 8(2). https://doi.org/10.3390/resources8020097
Ahmed, A. S., Islam, M. S., Hassan, A., Mohamad Haafiz, M. K., Islam, K. N., & Arjmandi, R. (2014). Impact of succinic anhydride on the properties of jute fiber/polypropylene biocomposites. Fibers and Polymers, 15(2), 307–314. https://doi.org/10.1007/s12221-014-0307-8
Amin, M. R., Chowdhury, M. A., & Kowser, M. A. (2019). Characterization and performance analysis of composite bioplastics synthesized using titanium dioxide nanoparticles with corn starch. Heliyon, 5(8). https://doi.org/10.1016/j.heliyon.2019.e02009
Bilal, A., Lin, R. J. T., & Jayaraman, K. (2014). Effects of fibre loading and interfacial modification on physical properties of rice husk /PE composites. Applied Mechanics and Materials, 575, 223–226. https://doi.org/10.4028/www.scientific.net/AMM.575.223
Burgstaller, C. (2014). A comparison of processing and performance for lignocellulosic reinforced polypropylene for injection moulding applications. Composites Part B: Engineering, 67, 192–198. https://doi.org/10.1016/j.compositesb.2014.07.010
Das, S. P., Ghosh, A., Gupta, A., Goyal, A., & Das, D. (2013). Lignocellulosic fermentation of wild grass employing recombinant hydrolytic enzymes and fermentative microbes with effective bioethanol recovery. BioMed Research International, 2013. https://doi.org/10.1155/2013/386063
De Rosa, I. M., Kenny, J. M., Puglia, D., Santulli, C., & Sarasini, F. (2010). Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Composites Science and Technology, 70(1), 116–122. https://doi.org/10.1016/j.compscitech.2009.09.013
Delville, J., Joly, C., Dole, P., & Bliard, C. (2003). Influence of photocrosslinking on the retrogradation of wheat starch based films. Carbohydrate Polymers, 53(4), 373–381. https://doi.org/10.1016/S0144-8617(03)00141-3
Dórame-Miranda, R. F., Gámez-Meza, N., Medina-Juárez, L. Á., Ezquerra-Brauer, J. M., Ovando-Martínez, M., & Lizardi-Mendoza, J. (2019). Bacterial cellulose production by Gluconacetobacter entanii using pecan nutshell as carbon source and its chemical functionalization. Carbohydrate Polymers, 207, 91–99. https://doi.org/10.1016/j.carbpol.2018.11.067
Dordević, N., Marinković, A. D., Nikolić, J. B., Drmanić, S., Rančić, M., Brković, D. S., & Uskoković, P. S. (2016). A study of the barrier properties of polyethylene coated with a nanocellulose/magnetite composite film. Journal of the Serbian Chemical Society, 81(5), 589–605. https://doi.org/10.2298/JSC151217019D
Gozdecki, C., Wilczyński, A., Kociszewski, M., & Zajchowski, S. (2015). Properties of wood–plastic composites made of milled particleboard and polypropylene. European Journal of Wood and Wood Products, 73(1), 87–95. https://doi.org/10.1007/s00107-014-0852-2
He, G., Zhang, F., Yu, H., Li, J., & Guo, S. (2016). Puncture characterization of multilayered polypropylene homopolymer/ethylene 1-octene copolymer sheets. RSC Advances, 6(16), 12744–12752. https://doi.org/10.1039/c5ra23333j
Indra Reddy, M., Anil Kumar, M., & Rama Bhadri Raju, C. (2018). Tensile and Flexural properties of Jute, Pineapple leaf and Glass Fiber Reinforced Polymer Matrix Hybrid Composites. Materials Today: Proceedings, 5(1), 458–462. https://doi.org/10.1016/j.matpr.2017.11.105
Kengkhetkit, N., & Amornsakchai, T. (2014). A new approach to “Greening” plastic composites using pineapple leaf waste for performance and cost effectiveness. Materials and Design, 55, 292–299. https://doi.org/10.1016/j.matdes.2013.10.005
Kocak, D., & Mistik, S. I. (2015). The use of palm leaf fibres as reinforcements in composites. Biofiber Reinforcements in Composite Materials, 273–281. https://doi.org/10.1533/9781782421276.2.273
Lindman, B., Medronho, B., Alves, L., Costa, C., Edlund, H., & Norgren, M. (2017). The relevance of structural features of cellulose and its interactions to dissolution, regeneration, gelation and plasticization phenomena. Physical Chemistry Chemical Physics, 19(35), 23704–23718. https://doi.org/10.1039/c7cp02409f
Marichelvam, M. K., Jawaid, M., & Asim, M. (2019). Corn and rice starch-based bio-plastics as alternative packaging materials. Fibers, 7(4), 1–14. https://doi.org/10.3390/fib7040032
Mazerolles, T., Heuzey, M. C., Soliman, M., Martens, H., Kleppinger, R., & Huneault, M. A. (2019). Development of co-continuous morphology in blends of thermoplastic starch and low-density polyethylene. Carbohydrate Polymers, 206(November 2018), 757–766. https://doi.org/10.1016/j.carbpol.2018.11.038
Medina-Jaramillo, C., Ochoa-Yepes, O., Bernal, C., & Famá, L. (2017). Active and smart biodegradable packaging based on starch and natural extracts. Carbohydrate Polymers, 176(August), 187–194. https://doi.org/10.1016/j.carbpol.2017.08.079
Mir, S. S., Nafsin, N., Hasan, M., Hasan, N., & Hassan, A. (2013). Improvement of physico-mechanical properties of coir-polypropylene biocomposites by fiber chemical treatment. Materials and Design, 52, 251–257. https://doi.org/10.1016/j.matdes.2013.05.062
Mohammadkazemi, F., Azin, M., & Ashori, A. (2015). Production of bacterial cellulose using different carbon sources and culture media. Carbohydrate Polymers, 117, 518–523. https://doi.org/10.1016/j.carbpol.2014.10.008
Nguyen, D. M., Do, T. V. V., Grillet, A. C., Ha Thuc, H., & Ha Thuc, C. N. (2016). Biodegradability of polymer film based on low density polyethylene and cassava starch. International Biodeterioration and Biodegradation, 115, 257–265. https://doi.org/10.1016/j.ibiod.2016.09.004
Rahman, M. R., Huque, M. M., Islam, M. N., & Hasan, M. (2008). Improvement of physico-mechanical properties of jute fiber reinforced polypropylene composites by post-treatment. Composites Part A: Applied Science and Manufacturing, 39(11), 1739–1747. https://doi.org/10.1016/j.compositesa.2008.08.002
Roy, S. B., Ramaraj, B., Shit, S. C., & Nayak, S. K. (2011). Polypropylene and potato starch biocomposites: Physicomechanical and thermal properties. Journal of Applied Polymer Science, 120(5), 3078–3086. https://doi.org/10.1002/app.33486
Sadeghifar, H., & Argyropoulos, D. S. (2016). Macroscopic Behavior of Kraft Lignin Fractions: Melt Stability Considerations for Lignin-Polyethylene Blends. ACS Sustainable Chemistry and Engineering, 4(10), 5160–5166. https://doi.org/10.1021/acssuschemeng.6b00636
Satoto, R., Karina, M., Hanif, A., Abdullah, D., & Nugroho, P. (2019). Mechanical and degradability properties of polyethylene / PBL composites in a wet-dry controlled environment. Journal of Materials and Environmental Science, 10(8), 706–718.
Scaffaro, R., Lopresti, F., & Botta, L. (2018). PLA based biocomposites reinforced with Posidonia oceanica leaves. Composites Part B: Engineering, 139(November 2017), 1–11. https://doi.org/10.1016/j.compositesb.2017.11.048
Wang, S., Feng, N., Zheng, J., Yoon, K. B., Lee, D., Qu, M., Zhang, X., & Zhang, H. (2016). Preparation of polyethylene/lignin nanocomposites from hollow spherical lignin-supported vanadium-based Ziegler–Natta catalyst. Polymers for Advanced Technologies, 27(10), 1351–1354. https://doi.org/10.1002/pat.3803
Zhang, Q., Yi, W., Li, Z., Wang, L., & Cai, H. (2018). Mechanical properties of rice husk biochar reinforced high density polyethylene composites. Polymers, 10(3), 1–10. https://doi.org/10.3390/polym10030286
DOI: 10.15408/jkv.v8i1.24557
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Rahmat Satoto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.