Plastic Composites Using Mango Leaf Waste for Cost Effectiveness and Green Environment

Rahmat Satoto, Rijal Ahmadi, Dadi Rusdiana, Erni Ernawaty, Anung Syampurwadi, Akbar Hanif Dawam Abdullah


Due to ecological considerations, natural biodegradation composites are widespread in tailoring plastics properties to specific needs. This work aims to demonstrate the available opportunity in using 100 and 140 mesh powdered mango leaf (PML) waste as a filler in polypropylene (PP) composites. Composites were produced via melt blending on a twin-screw internal mixer, with a different particulate size and a weight ratio of PML. Morphology, tensile, flexural, hardness, tear, puncture, thermal, and water absorption properties of the composites were assessed after 0, 1, 7, 14, and 28 days of water immersion. We found that the smaller particle size shows a better mechanical and water absorption of the composites, but not for thermal properties. The mechanical properties decreased with increasing PML content; however, these properties did not differ considerably from pure PP and other composites with natural filler. Besides, these polypropylene/PML composites showed excellent properties in water absorption.


Mango leaf; Mechanical properties; Natural fiber; Polypropylene composite; Single-used articles


Abdullah, M. Z., & Aslan, N. H. C. (2019). Performance evaluation of composite from recycled polypropylene reinforced with mengkuang leaf fiber. Resources, 8(2).

Ahmed, A. S., Islam, M. S., Hassan, A., Mohamad Haafiz, M. K., Islam, K. N., & Arjmandi, R. (2014). Impact of succinic anhydride on the properties of jute fiber/polypropylene biocomposites. Fibers and Polymers, 15(2), 307–314.

Amin, M. R., Chowdhury, M. A., & Kowser, M. A. (2019). Characterization and performance analysis of composite bioplastics synthesized using titanium dioxide nanoparticles with corn starch. Heliyon, 5(8).

Bilal, A., Lin, R. J. T., & Jayaraman, K. (2014). Effects of fibre loading and interfacial modification on physical properties of rice husk /PE composites. Applied Mechanics and Materials, 575, 223–226.

Burgstaller, C. (2014). A comparison of processing and performance for lignocellulosic reinforced polypropylene for injection moulding applications. Composites Part B: Engineering, 67, 192–198.

Das, S. P., Ghosh, A., Gupta, A., Goyal, A., & Das, D. (2013). Lignocellulosic fermentation of wild grass employing recombinant hydrolytic enzymes and fermentative microbes with effective bioethanol recovery. BioMed Research International, 2013.

De Rosa, I. M., Kenny, J. M., Puglia, D., Santulli, C., & Sarasini, F. (2010). Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Composites Science and Technology, 70(1), 116–122.

Delville, J., Joly, C., Dole, P., & Bliard, C. (2003). Influence of photocrosslinking on the retrogradation of wheat starch based films. Carbohydrate Polymers, 53(4), 373–381.

Dórame-Miranda, R. F., Gámez-Meza, N., Medina-Juárez, L. Á., Ezquerra-Brauer, J. M., Ovando-Martínez, M., & Lizardi-Mendoza, J. (2019). Bacterial cellulose production by Gluconacetobacter entanii using pecan nutshell as carbon source and its chemical functionalization. Carbohydrate Polymers, 207, 91–99.

Dordević, N., Marinković, A. D., Nikolić, J. B., Drmanić, S., Rančić, M., Brković, D. S., & Uskoković, P. S. (2016). A study of the barrier properties of polyethylene coated with a nanocellulose/magnetite composite film. Journal of the Serbian Chemical Society, 81(5), 589–605.

Gozdecki, C., Wilczyński, A., Kociszewski, M., & Zajchowski, S. (2015). Properties of wood–plastic composites made of milled particleboard and polypropylene. European Journal of Wood and Wood Products, 73(1), 87–95.

He, G., Zhang, F., Yu, H., Li, J., & Guo, S. (2016). Puncture characterization of multilayered polypropylene homopolymer/ethylene 1-octene copolymer sheets. RSC Advances, 6(16), 12744–12752.

Indra Reddy, M., Anil Kumar, M., & Rama Bhadri Raju, C. (2018). Tensile and Flexural properties of Jute, Pineapple leaf and Glass Fiber Reinforced Polymer Matrix Hybrid Composites. Materials Today: Proceedings, 5(1), 458–462.

Kengkhetkit, N., & Amornsakchai, T. (2014). A new approach to “Greening” plastic composites using pineapple leaf waste for performance and cost effectiveness. Materials and Design, 55, 292–299.

Kocak, D., & Mistik, S. I. (2015). The use of palm leaf fibres as reinforcements in composites. Biofiber Reinforcements in Composite Materials, 273–281.

Lindman, B., Medronho, B., Alves, L., Costa, C., Edlund, H., & Norgren, M. (2017). The relevance of structural features of cellulose and its interactions to dissolution, regeneration, gelation and plasticization phenomena. Physical Chemistry Chemical Physics, 19(35), 23704–23718.

Marichelvam, M. K., Jawaid, M., & Asim, M. (2019). Corn and rice starch-based bio-plastics as alternative packaging materials. Fibers, 7(4), 1–14.

Mazerolles, T., Heuzey, M. C., Soliman, M., Martens, H., Kleppinger, R., & Huneault, M. A. (2019). Development of co-continuous morphology in blends of thermoplastic starch and low-density polyethylene. Carbohydrate Polymers, 206(November 2018), 757–766.

Medina-Jaramillo, C., Ochoa-Yepes, O., Bernal, C., & Famá, L. (2017). Active and smart biodegradable packaging based on starch and natural extracts. Carbohydrate Polymers, 176(August), 187–194.

Mir, S. S., Nafsin, N., Hasan, M., Hasan, N., & Hassan, A. (2013). Improvement of physico-mechanical properties of coir-polypropylene biocomposites by fiber chemical treatment. Materials and Design, 52, 251–257.

Mohammadkazemi, F., Azin, M., & Ashori, A. (2015). Production of bacterial cellulose using different carbon sources and culture media. Carbohydrate Polymers, 117, 518–523.

Nguyen, D. M., Do, T. V. V., Grillet, A. C., Ha Thuc, H., & Ha Thuc, C. N. (2016). Biodegradability of polymer film based on low density polyethylene and cassava starch. International Biodeterioration and Biodegradation, 115, 257–265.

Rahman, M. R., Huque, M. M., Islam, M. N., & Hasan, M. (2008). Improvement of physico-mechanical properties of jute fiber reinforced polypropylene composites by post-treatment. Composites Part A: Applied Science and Manufacturing, 39(11), 1739–1747.

Roy, S. B., Ramaraj, B., Shit, S. C., & Nayak, S. K. (2011). Polypropylene and potato starch biocomposites: Physicomechanical and thermal properties. Journal of Applied Polymer Science, 120(5), 3078–3086.

Sadeghifar, H., & Argyropoulos, D. S. (2016). Macroscopic Behavior of Kraft Lignin Fractions: Melt Stability Considerations for Lignin-Polyethylene Blends. ACS Sustainable Chemistry and Engineering, 4(10), 5160–5166.

Satoto, R., Karina, M., Hanif, A., Abdullah, D., & Nugroho, P. (2019). Mechanical and degradability properties of polyethylene / PBL composites in a wet-dry controlled environment. Journal of Materials and Environmental Science, 10(8), 706–718.

Scaffaro, R., Lopresti, F., & Botta, L. (2018). PLA based biocomposites reinforced with Posidonia oceanica leaves. Composites Part B: Engineering, 139(November 2017), 1–11.

Wang, S., Feng, N., Zheng, J., Yoon, K. B., Lee, D., Qu, M., Zhang, X., & Zhang, H. (2016). Preparation of polyethylene/lignin nanocomposites from hollow spherical lignin-supported vanadium-based Ziegler–Natta catalyst. Polymers for Advanced Technologies, 27(10), 1351–1354.

Zhang, Q., Yi, W., Li, Z., Wang, L., & Cai, H. (2018). Mechanical properties of rice husk biochar reinforced high density polyethylene composites. Polymers, 10(3), 1–10.

Full Text: PDF

DOI: 10.15408/jkv.v8i1.24557


  • There are currently no refbacks.

Copyright (c) 2022 Rahmat Satoto

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.