Plastic Composites Using Mango Leaf Waste for Cost Effectiveness and Green Environment
DOI:
https://doi.org/10.15408/jkv.v8i1.24557Keywords:
Mango leaf, Mechanical properties, Natural fiber, Polypropylene composite, Single-used articlesAbstract
Due to ecological considerations, natural biodegradation composites are widespread in tailoring plastics properties to specific needs. This work aims to demonstrate the available opportunity in using 100 and 140 mesh powdered mango leaf (PML) waste as a filler in polypropylene (PP) composites. Composites were produced via melt blending on a twin-screw internal mixer, with a different particulate size and a weight ratio of PML. Morphology, tensile, flexural, hardness, tear, puncture, thermal, and water absorption properties of the composites were assessed after 0, 1, 7, 14, and 28 days of water immersion. We found that the smaller particle size shows a better mechanical and water absorption of the composites, but not for thermal properties. The mechanical properties decreased with increasing PML content; however, these properties did not differ considerably from pure PP and other composites with natural filler. Besides, these polypropylene/PML composites showed excellent properties in water absorption.Downloads
References
Abdullah, M. Z., & Aslan, N. H. C. (2019). Performance evaluation of composite from recycled polypropylene reinforced with mengkuang leaf fiber. Resources, 8(2). https://doi.org/10.3390/resources8020097
Ahmed, A. S., Islam, M. S., Hassan, A., Mohamad Haafiz, M. K., Islam, K. N., & Arjmandi, R. (2014). Impact of succinic anhydride on the properties of jute fiber/polypropylene biocomposites. Fibers and Polymers, 15(2), 307–314. https://doi.org/10.1007/s12221-014-0307-8
Amin, M. R., Chowdhury, M. A., & Kowser, M. A. (2019). Characterization and performance analysis of composite bioplastics synthesized using titanium dioxide nanoparticles with corn starch. Heliyon, 5(8). https://doi.org/10.1016/j.heliyon.2019.e02009
Bilal, A., Lin, R. J. T., & Jayaraman, K. (2014). Effects of fibre loading and interfacial modification on physical properties of rice husk /PE composites. Applied Mechanics and Materials, 575, 223–226. https://doi.org/10.4028/www.scientific.net/AMM.575.223
Burgstaller, C. (2014). A comparison of processing and performance for lignocellulosic reinforced polypropylene for injection moulding applications. Composites Part B: Engineering, 67, 192–198. https://doi.org/10.1016/j.compositesb.2014.07.010
Das, S. P., Ghosh, A., Gupta, A., Goyal, A., & Das, D. (2013). Lignocellulosic fermentation of wild grass employing recombinant hydrolytic enzymes and fermentative microbes with effective bioethanol recovery. BioMed Research International, 2013. https://doi.org/10.1155/2013/386063
De Rosa, I. M., Kenny, J. M., Puglia, D., Santulli, C., & Sarasini, F. (2010). Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Composites Science and Technology, 70(1), 116–122. https://doi.org/10.1016/j.compscitech.2009.09.013
Delville, J., Joly, C., Dole, P., & Bliard, C. (2003). Influence of photocrosslinking on the retrogradation of wheat starch based films. Carbohydrate Polymers, 53(4), 373–381. https://doi.org/10.1016/S0144-8617(03)00141-3
Dórame-Miranda, R. F., Gámez-Meza, N., Medina-Juárez, L. Á., Ezquerra-Brauer, J. M., Ovando-Martínez, M., & Lizardi-Mendoza, J. (2019). Bacterial cellulose production by Gluconacetobacter entanii using pecan nutshell as carbon source and its chemical functionalization. Carbohydrate Polymers, 207, 91–99. https://doi.org/10.1016/j.carbpol.2018.11.067
Dordević, N., Marinković, A. D., Nikolić, J. B., Drmanić, S., Rančić, M., Brković, D. S., & Uskoković, P. S. (2016). A study of the barrier properties of polyethylene coated with a nanocellulose/magnetite composite film. Journal of the Serbian Chemical Society, 81(5), 589–605. https://doi.org/10.2298/JSC151217019D
Gozdecki, C., Wilczyński, A., Kociszewski, M., & Zajchowski, S. (2015). Properties of wood–plastic composites made of milled particleboard and polypropylene. European Journal of Wood and Wood Products, 73(1), 87–95. https://doi.org/10.1007/s00107-014-0852-2
He, G., Zhang, F., Yu, H., Li, J., & Guo, S. (2016). Puncture characterization of multilayered polypropylene homopolymer/ethylene 1-octene copolymer sheets. RSC Advances, 6(16), 12744–12752. https://doi.org/10.1039/c5ra23333j
Indra Reddy, M., Anil Kumar, M., & Rama Bhadri Raju, C. (2018). Tensile and Flexural properties of Jute, Pineapple leaf and Glass Fiber Reinforced Polymer Matrix Hybrid Composites. Materials Today: Proceedings, 5(1), 458–462. https://doi.org/10.1016/j.matpr.2017.11.105
Kengkhetkit, N., & Amornsakchai, T. (2014). A new approach to “Greening” plastic composites using pineapple leaf waste for performance and cost effectiveness. Materials and Design, 55, 292–299. https://doi.org/10.1016/j.matdes.2013.10.005
Kocak, D., & Mistik, S. I. (2015). The use of palm leaf fibres as reinforcements in composites. Biofiber Reinforcements in Composite Materials, 273–281. https://doi.org/10.1533/9781782421276.2.273
Lindman, B., Medronho, B., Alves, L., Costa, C., Edlund, H., & Norgren, M. (2017). The relevance of structural features of cellulose and its interactions to dissolution, regeneration, gelation and plasticization phenomena. Physical Chemistry Chemical Physics, 19(35), 23704–23718. https://doi.org/10.1039/c7cp02409f
Marichelvam, M. K., Jawaid, M., & Asim, M. (2019). Corn and rice starch-based bio-plastics as alternative packaging materials. Fibers, 7(4), 1–14. https://doi.org/10.3390/fib7040032
Mazerolles, T., Heuzey, M. C., Soliman, M., Martens, H., Kleppinger, R., & Huneault, M. A. (2019). Development of co-continuous morphology in blends of thermoplastic starch and low-density polyethylene. Carbohydrate Polymers, 206(November 2018), 757–766. https://doi.org/10.1016/j.carbpol.2018.11.038
Medina-Jaramillo, C., Ochoa-Yepes, O., Bernal, C., & Famá, L. (2017). Active and smart biodegradable packaging based on starch and natural extracts. Carbohydrate Polymers, 176(August), 187–194. https://doi.org/10.1016/j.carbpol.2017.08.079
Mir, S. S., Nafsin, N., Hasan, M., Hasan, N., & Hassan, A. (2013). Improvement of physico-mechanical properties of coir-polypropylene biocomposites by fiber chemical treatment. Materials and Design, 52, 251–257. https://doi.org/10.1016/j.matdes.2013.05.062
Mohammadkazemi, F., Azin, M., & Ashori, A. (2015). Production of bacterial cellulose using different carbon sources and culture media. Carbohydrate Polymers, 117, 518–523. https://doi.org/10.1016/j.carbpol.2014.10.008
Nguyen, D. M., Do, T. V. V., Grillet, A. C., Ha Thuc, H., & Ha Thuc, C. N. (2016). Biodegradability of polymer film based on low density polyethylene and cassava starch. International Biodeterioration and Biodegradation, 115, 257–265. https://doi.org/10.1016/j.ibiod.2016.09.004
Rahman, M. R., Huque, M. M., Islam, M. N., & Hasan, M. (2008). Improvement of physico-mechanical properties of jute fiber reinforced polypropylene composites by post-treatment. Composites Part A: Applied Science and Manufacturing, 39(11), 1739–1747. https://doi.org/10.1016/j.compositesa.2008.08.002
Roy, S. B., Ramaraj, B., Shit, S. C., & Nayak, S. K. (2011). Polypropylene and potato starch biocomposites: Physicomechanical and thermal properties. Journal of Applied Polymer Science, 120(5), 3078–3086. https://doi.org/10.1002/app.33486
Sadeghifar, H., & Argyropoulos, D. S. (2016). Macroscopic Behavior of Kraft Lignin Fractions: Melt Stability Considerations for Lignin-Polyethylene Blends. ACS Sustainable Chemistry and Engineering, 4(10), 5160–5166. https://doi.org/10.1021/acssuschemeng.6b00636
Satoto, R., Karina, M., Hanif, A., Abdullah, D., & Nugroho, P. (2019). Mechanical and degradability properties of polyethylene / PBL composites in a wet-dry controlled environment. Journal of Materials and Environmental Science, 10(8), 706–718.
Scaffaro, R., Lopresti, F., & Botta, L. (2018). PLA based biocomposites reinforced with Posidonia oceanica leaves. Composites Part B: Engineering, 139(November 2017), 1–11. https://doi.org/10.1016/j.compositesb.2017.11.048
Wang, S., Feng, N., Zheng, J., Yoon, K. B., Lee, D., Qu, M., Zhang, X., & Zhang, H. (2016). Preparation of polyethylene/lignin nanocomposites from hollow spherical lignin-supported vanadium-based Ziegler–Natta catalyst. Polymers for Advanced Technologies, 27(10), 1351–1354. https://doi.org/10.1002/pat.3803
Zhang, Q., Yi, W., Li, Z., Wang, L., & Cai, H. (2018). Mechanical properties of rice husk biochar reinforced high density polyethylene composites. Polymers, 10(3), 1–10. https://doi.org/10.3390/polym10030286