Flavonoids from the Roots of Amomum compactum Soland Ex Maton (Zingiberaceae)

Authors

  • Deden Indra Dinata Departemen of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Bhakti Kencana University, Soekarno Hatta 754, Bandung, 40286, Indonesia
  • Rani Maharani Departemen of Chemistry, Faculty of mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
  • Fauzan Zein Muttaqien Departemen of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Bhakti Kencana University, Soekarno Hatta 754, Bandung, 40286, Indonesia
  • Unang Supratman Department of Chemistry Faculty of Mathematics and Natural Sciences Universitas Padjadjaran
  • Mohamad Nurul Azmi School of Chemical Sciences, Universiti Sains Malaysia,11800 Minden,Penang, Malaysia
  • Yoshihito Shiono Departemen of Food, Life and Environmental Sciences, Yamagata University, Tsuruoka, 997-4555, Japan

DOI:

https://doi.org/10.15408/jkv.v7i2.21599

Keywords:

Amomum compactum, antioxidant, DPPH, flavonoid, kaempferol

Abstract

Amomum compactum Soland Ex Maton is one of the Zingiberaceae family plants which is the endemic plants from West Java, Indonesia. This study was aimed to determine the chemical structure of flavonoid compounds from n-hexane extract of A.compactum Sol. Ex Maton roots. Dried powder of the roots was extracted consecutively with n-hexane, ethyl acetate, and methanol solvents. Three flavonoids, 5-hydroxy-3,7,4`-trimethoxy kaempferol (1), 5-hydroxy-3,7,3',4'-tetra methoxy kaempferol (2) and 4'-hydroxy-3,5,7-trimethoxy kaempferol (3), have been isolated from the roots of A. compactum Sol. Ex Maton.  The chemical structures of compounds 1-3 were identified by spectroscopy data including infrared 1D-NMR, 2D-NMR and HRTOF-MS as well as by comparison with previously reported spectral data. Compounds 1-3 were isolated from this plant for the first time and showed free radical DPPH scavenging activity.

Downloads

Download data is not yet available.

References

Aneja, K. R., & Joshi, R. (2009). Antimicrobial Activity of Amomum subulatum and Elettaria cardamomum Against Dental Caries Causing Microorganisms. 93(4), 136119.

Bellik, Y., Benabdesselam, F., Ayad, A., Dahmani, Z., Boukraa, L., Nemmar, A., & Iguer-Ouada, M. (2013). Antioxidant activity of the essential oil and oleoresin of zingiber officinale roscoe as affected by chemical environment. International Journal of Food Properties, 16(6), 1304–1313. https://doi.org/10.1080/10942912.2011.584257

Bhagat, N., & Chaturvedi, A. (2016). Spices as an alternative therapy for cancer treatment. Systematic Reviews in Pharmacy, 7(1), 46–56. https://doi.org/10.5530/srp.2016.7.7

Bhattacharjee, S., Rana, T., & Sengupta, A. (2007). Inhibition of lipid peroxidation and enhancement of GST activity by cardamom and cinnamon during chemically induced colon carcinogenesis in Swiss albino mice. Asian Pacific Journal of Cancer Prevention, 8(4), 578–582.

Burda, S., & Oleszek, W. (2001). Antioxidant and antiradical activities of flavonoids. Journal of Agricultural and Food Chemistry, 49(6), 2774–2779. https://doi.org/10.1021/jf001413m

Cornelius, M. T. F., De Carvalho, M. G., Da Silva, T. M. S., Alves, C. C. F., Siston, A. P. N., Alves, K. Z., … Braz-Filho, R. (2010). Other chemical constituents isolated from Solanum crinitum Lam. (Solanaceae). Journal of the Brazilian Chemical Society, 21(12), 2211–2219. https://doi.org/10.1590/S0103-50532010001200007

Deng, S., Hu, B., & An, H.-M. (2012). Traditional Chinese Medicinal Syndromes and Treatment in Colorectal Cancer. Journal of Cancer Therapy, 03(06), 888–897. https://doi.org/10.4236/jct.2012.326114

Droop, A. J., & Newman, M. F. (2014). A revision of amomum (zingiberaceae) in sumatra. Edinburgh Journal of Botany, 71(2), 193–258. https://doi.org/10.1017/S0960428614000043

Droop, J., Kaewsri, W., Lamxay, V., Poulsen, A. D., & Newman, M. (2013). Identity and lectotypification of Amomum compactum and Amomum kepulaga (Zingiberaceae). Taxon, 62(6), 1287–1294. https://doi.org/10.12705/626.8

Kassim, N. K., Rahmani, M., Ismail, A., Sukari, M. A., Ee, G. C. L., Nasir, N. M., & Awang, K. (2013). Antioxidant activity-guided separation of coumarins and lignan from Melicope glabra (Rutaceae). Food Chemistry, 139(1–4), 87–92. https://doi.org/10.1016/j.foodchem.2013.01.108

Katayama, K., Masuyama, K., Yoshioka, S., Hasegawa, H., Mitsuhashi, J., & Sugimoto, Y. (2007). Flavonoids inhibit breast cancer resistance protein-mediated drug resistance: Transporter specificity and structure-activity relationship. Cancer Chemotherapy and Pharmacology, 60(6), 789–797. https://doi.org/10.1007/s00280-007-0426-7

Lamxay. (2011). The Genus Amomum (Zingiberaceae) in Cambodia, Laos and Vietnam. Acta Universitatis Upsaliensis UPPSALA, 53(9), 1689–1699.

Marby, TJ, Markam, K.R.and Thomas, M. . (1970). The Systematic Identification of Flavonoids. Springer-Verlag.

Markham, Ø. M. A. and K. R. (2007). Flavonoids, Chemistry, Biochemistry and Applications. 119(50), 140–141.

Martin, T. S., Kikuzaki, H., Hisamoto, M., & Nakatani, N. (2000). Constituents of Amomum tsao-ko and their radical scavenging and antioxidant activities. JAOCS, Journal of the American Oil Chemists’ Society, 77(6), 667–673. https://doi.org/10.1007/s11746-000-0107-4

Martinez-Perez, C., Ward, C., Cook, G., Mullen, P., McPhail, D., Harrison, D. J., & Langdon, S. P. (2014). Novel flavonoids as anti-cancer agents: Mechanisms of action and promise for their potential application in breast cancer. Biochemical Society Transactions, 42(4), 1017–1023. https://doi.org/10.1042/BST20140073

Molyneux P. (2004). The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating anti-oxidant activity. Songklanakarin Journal of Science and Technology, 26(May), 211–219.

Natella, F., Nardini, M., Di Felice, M., & Scaccini, C. (1999). Benzoic and cinnamic acid derivatives as antioxidants: Structure- activity relation. Journal of Agricultural and Food Chemistry, 47(4), 1453–1459. https://doi.org/10.1021/jf980737w

Rossi, M. H., Yoshida, M., & Maia, J. G. S. (1997). Neolignans, styrylpyrones and flavonoids from an Aniba species. Phytochemistry, 45(6), 1263–1269. https://doi.org/10.1016/S0031-9422(97)00075-7

Sarian, M. N., Ahmed, Q. U., Mat So’Ad, S. Z., Alhassan, A. M., Murugesu, S., Perumal, V., … Latip, J. (2017). Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study. BioMed Research International, 2017. https://doi.org/10.1155/2017/8386065

Schreiber, S. B., Bozell, J. J., Hayes, D. G., & Zivanovic, S. (2013). Introduction of primary antioxidant activity to chitosan for application as a multifunctional food packaging material. Food Hydrocolloids, 33(2), 207–214. https://doi.org/10.1016/j.foodhyd.2013.03.006

Setyawan, A. D. W. I., & Bermawie, N. (2014). Comparisons of isozyme diversity in local Java cardamom (Amomum compactum) and true cardamom (Elettaria cardamomum). Nusantara Bioscience, 6(1), 94–101. https://doi.org/10.13057/nusbiosci/n060115

Verma, A. K., Singh, H., Satyanarayana, M., Srivastava, S. P., Tiwari, P., Singh, A. B., … Pratap, R. (2012). Flavone-based novel antidiabetic and antidyslipidemic agents. Journal of Medicinal Chemistry, 55(10), 4551–4567. https://doi.org/10.1021/jm201107g

Wang, T. yang, Li, Q., & Bi, K. shun. (2018). Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian Journal of Pharmaceutical Sciences, 13(1), 12–23. https://doi.org/10.1016/j.ajps.2017.08.004

Zhang, T. T., Lu, C. L., & Jiang, J. G. (2014). Bioactivity evaluation of ingredients identified from the fruits of Amomum tsaoko Crevost et Lemaire, a Chinese spice. Food and Function, 5(8), 1747–1754. https://doi.org/10.1039/c4fo00169a

Zhang, T. T., Lu, C. L., & Jiang, J. G. (2015). Antioxidant and anti-tumour evaluation of compounds identified from fruit of Amomum tsaoko Crevost et Lemaire. Journal of Functional Foods, 18, 423–431. https://doi.org/10.1016/j.jff.2015.08.005

Downloads

Published

27-11-2021

Issue

Section

Jurnal Kimia VALENSI, Volume 7, No. 2, November 2021

How to Cite

Flavonoids from the Roots of Amomum compactum Soland Ex Maton (Zingiberaceae). (2021). Jurnal Kimia Valensi, 7(2), 142-149. https://doi.org/10.15408/jkv.v7i2.21599