MARZANO'S INSTRUCTIONAL STRATEGIES: FOSTERING INFORMATION ANALYSIS AND PROCESSING SKILLS OF PLANT ANATOMY IN TEACHER EDUCATION

Anna Fitri Hindriana, Behailu Merdekios Gello, Ina Setiawati, Handayani Handayani, Alin Rizki Pratami

Abstract


Abstract

This study proposes a design for a Plant Anatomy course by adapting Marzano's instructional framework to develop students’ information analysis and processing skills. The focus of the Plant Anatomy course is determined because it requires complex cognitive processing to integrate knowledge about plant tissue structure with changes in plant structure based on adaptation strategies in their habitat. This study employs a quantitative method, utilising information analysis ability tests and process skills tests as its instruments. The data were analysed descriptively using an assessment rubric. The design is then tested on 106 undergraduate students in Biology Education taking the Plant Anatomy course during data collection at a university in West Java, Indonesia. The results showed that the Marzano-based plant anatomy course design could facilitate students' information analysis and processing skills due to a conducive learning environment, the utilisation of prior knowledge, the development of thinking potential, the delivery of meaningful information, contextual learning, and cooperative learning. This study further proposes using this design when studying materials with a high concept interconnection.

Abstrak

kerangka pembelajaran Marzano guna mengembangkan keterampilan analisis dan pemrosesan informasi mahasiswa. Fokus pada mata kuliah Anatomi Tumbuhan dipilih karena materi ini memerlukan pemrosesan kognitif yang kompleks untuk mengintegrasikan pengetahuan tentang struktur jaringan tumbuhan dengan perubahan struktur tumbuhan berdasarkan strategi adaptasi di habitatnya. Penelitian ini menggunakan metode kuantitatif, dan instrumen yang digunakan adalah tes kemampuan analisis informasi dan tes keterampilan proses. Data dianalisis secara deskriptif menggunakan rubrik penilaian.  Desain ini kemudian diuji pada 106 mahasiswa program sarjana Pendidikan Biologi yang mengambil mata kuliah Anatomi Tumbuhan selama pengumpulan data di sebuah universitas di Jawa Barat, Indonesia. Hasil penelitian menunjukkan bahwa desain pembelajaran Anatomi Tumbuhan berbasis Marzano dapat memfasilitasi keterampilan analisis dan pemrosesan informasi mahasiswa melalui lingkungan belajar yang kondusif, pemanfaatan pengetahuan awal, pengembangan potensi berpikir, penyampaian informasi yang bermakna, pembelajaran kontekstual, dan pembelajaran kooperatif. Penelitian ini lebih lanjut mengusulkan agar desain ini digunakan dalam mempelajari materi yang memiliki keterkaitan konsep yang tinggi.


Keywords


Cognitive load; concept mastery; information analysis skill; marzano instructional framework; plant anatomy learning; Beban kognitif; kerangka pembelajaran marzano; keterampilan analisis informasi; penguasaan konsep pembelajaran anatomi tumbuhan.

Full Text:

PDF

References


Almekhlafi, A. G., Ismail, S. A., & Hassan, A. A. (2020). Teachers’ reported use of marzano’s instructional strategies in United Arab Emirates K-12 schools. International Journal of Instruction, 13(1), 325–340. https://doi.org/10.29333/iji.2020.13122a

Amadieu, F., van Gog, T., Paas, F., Tricot, A., & Mariné, C. (2009). Effects of prior knowledge and concept-map structure on disorientation, cognitive load, and learning. Learning and Instruction, 19(5), 376–386. https://doi.org/10.1016/j.learninstruc.2009.02.005

Asrul, Ananda Rusydi, & Rosnita. (2015). Evaluasi Pembelajaran. www.ciptapustaka.com

Baglama, B., Yucesoy, Y., & Yikmis, A. (2018). Using animation as a means of enhancing learning of individuals with special needs. TEM Journal, 7(3), 670–677. https://doi.org/10.18421/TEM73-26

Bao, L., Cai, T., Koenig, K., Fang, K., Han, J., Wang, J., Liu, Q., Ding, L., Cui, L., Luo, Y., Wang, Y., Li, E., & Wu, N. (2009). Physics: Learning and scientific reasoning. In Science (Vol. 323, Issue 5914, pp. 586–587). https://doi.org/10.1126/science.1167740

Bolondi, G., Branchetti, L., & Giberti, C. (2018). A quantitative methodology for analyzing the impact of the formulation of a mathematical item on students learning assessment. Studies in Educational Evaluation, 58, 37–50. https://doi.org/10.1016/j.stueduc.2018.05.002

Chernikova, O., Heitzmann, N., Stadler, M., Holzberger, D., Seidel, T., & Fischer, F. (2020). Simulation-Based Learning in Higher Education: A Meta-Analysis. Review of Educational Research, 90(4), 499–541. https://doi.org/10.3102/0034654320933544

Dubas, J. M., & Toledo, S. A. (2016). Taking higher order thinking seriously: Using Marzano’s taxonomy in the economics classroom. International Review of Economics Education, 21, 12–20. https://doi.org/10.1016/j.iree.2015.10.005

Fang, N., & Tajvidi, M. (2018). The effects of computer simulation and animation (CSA) on students’ cognitive processes: A comparative case study in an undergraduate engineering course. Journal of Computer Assisted Learning, 34(1), 71–83. https://doi.org/10.1111/jcal.12215

Fryer, L. K., Shum, A., Lee, A., & Lau, P. (2021). Mapping students’ interest in a new domain: Connecting prior knowledge, interest, and self-efficacy with interesting tasks and a lasting desire to reengage. Learning and Instruction, 75(August 2020), 101493. https://doi.org/10.1016/j.learninstruc.2021.101493

Garcia, C., Argelagós, E., & Privado, J. (2021). Assessment of higher education students’ information problem-solving skills in educational sciences. Information Development, 37(3), 359–375. https://doi.org/10.1177/0266666920976189

Hacıeminoğlu, E., Yıldız, N. G., & Şeker, R. (2022). Factors Related to Cognitive Reasoning of Pre-Service Teachers’ Science Process Skills: Role of Experiments at Home on Meaningful Learning. Sustainability, 14(13), 7703. https://doi.org/10.3390/su14137703

Hanfstingl, B., Benke, G., & Zhang, Y. (2019). Comparing variation theory with Piaget’s theory of cognitive development: more similarities than differences? Educational Action Research, 27(4), 511–526. https://doi.org/10.1080/09650792.2018.1564687

Hujjatusnaini, N., Corebima, A. D., Prawiro, S. R., & Gofur, A. (2022). The effect of Blended project-based learning integrated with 21St century skills on pre-servive biology teachers’ higher order thingking skills. Jurnal Pendidikan IPA Indonesia, 11(1), 104–118. https://doi.org/10.15294/jpii.v11i1.27148

Jokinen, J. P. P., Wang, Z., Sarcar, S., Oulasvirta, A., & Ren, X. (2020). Adaptive feature guidance: Modelling visual search with graphical layouts. International Journal of Human Computer Studies, 136(July 2019), 102376. https://doi.org/10.1016/j.ijhcs.2019.102376

Kadarusman, L., Rahmat, A., & Priyandoko, D. (2020). The relationship of students’ thinking level and the ability to develop proposition network representation of human nervous system in modeling based learning (MBL). Jurnal Pendidikan IPA Indonesia, 9(3), 361–370. https://doi.org/10.15294/jpii.v9i3.24214

Kerzel, D., & Andres, M. K. S. (2020). Object features reinstated from episodic memory guide attentional selection. Cognition, 197. https://doi.org/10.1016/j.cognition.2019.104158

Lim, S. J., Shinn-Cunningham, B. G., & Perrachione, T. K. (2019). Effects of talker continuity and speech rate on auditory working memory. Attention, Perception, and Psychophysics, 81(4), 1167–1177. https://doi.org/10.3758/s13414-019-01684-w

Lintz, E. N., & Johnson, M. R. (2021). Refreshing and removing items in working memory: Different approaches to equivalent processes? Cognition, 211, 104655. https://doi.org/10.1016/j.cognition.2021.104655

Liu, T. C., Lin, Y. C., Hsu, C. Y., Hsu, C. Y., & Paas, F. (2021). Learning from animations and computer simulations: Modality and reverse modality effects. British Journal of Educational Technology, 52(1), 304–317. https://doi.org/10.1111/bjet.12996

Manglos‐Weber, N. D., & Avelis, J. (2019). Expanding the Reflexive Space: Resilient Young Adults, Institutional Cultures, and Cognitive Schemas. Sociological Forum, 34(3), 664–684. https://doi.org/10.1111/socf.12519

Marzano, R. J. (1992). A Different Kind of Classroom Teaching with Dimensions of Learning. Association for Supervision and Curriculum Development. https://files.eric.ed.gov/fulltext/ED350086.pdf

Murphy, C., Smith, G., & Broderick, N. (2021). A Starting Point: Provide Children Opportunities to Engage with Scientific Inquiry and Nature of Science. Research in Science Education, 51(6), 1759–1793. https://doi.org/10.1007/s11165-019-9825-0

Ommering, B. W. C., Wijnen-Meijer, M., Dolmans, D. H. J. M., Dekker, F. W., & van Blankenstein, F. M. (2020). Promoting positive perceptions of and motivation for research among undergraduate medical students to stimulate future research involvement: a grounded theory study. BMC Medical Education, 20(1), 204. https://doi.org/10.1186/s12909-020-02112-6

Ouyang, F., Chen, S., Yang, Y., & Chen, Y. (2022). Examining the Effects of Three Group-Level Metacognitive Scaffoldings on In-Service Teachers’ Knowledge Building. Journal of Educational Computing Research, 60(2), 352–379. https://doi.org/10.1177/07356331211030847

Ovbiagbonhia, A. R., Kollöffel, B., & Brok, P. den. (2019). Educating for innovation: students’ perceptions of the learning environment and of their own innovation competence. Learning Environments Research, 22(3), 387–407. https://doi.org/10.1007/s10984-019-09280-3

Ozturk, M. (2021). Cognitive and metacognitive skills performed by math teachers in the proving process of number theory. Athens Journal of Education, 8(1), 53–72. https://doi.org/10.30958/aje.8-1-4

Paas, F., & van Merriënboer, J. J. G. (2020). Cognitive-Load Theory: Methods to Manage Working Memory Load in the Learning of Complex Tasks. Current Directions in Psychological Science, 29(4), 394–398. https://doi.org/10.1177/0963721420922183

Puspitawati, R. P., Yuanita, L., Rahayu, Y. S., Indana, S., & Susiyawati, E. (2018). Two problem solving cycles to achieve learning outcomes of thinking skills and plant anatomy concept mastery. Jurnal Pendidikan IPA Indonesia, 7(3), 312–321. https://doi.org/10.15294/jpii.v7i3.14295

Rönnberg, J., Holmer, E., & Rudner, M. (2021). Cognitive hearing science: three memory systems, two approaches, and the ease of language understanding model. Journal of Speech, Language, and Hearing Research, 64(2), 359–370. https://doi.org/10.1044/2020_JSLHR-20-00007

Setiono, S., Rustaman, N. Y., Rahmat, A., & Anggraeni, S. (2017). Students’ Cognitive Abilities in Plant Anatomy Practical Work. Journal of Physics: Conference Series, 895(1). https://doi.org/10.1088/1742-6596/895/1/012127

Soedjono, S., Yusuf, M., & Yuwono, J. (2022). Project-Based Learning and Health-Promoting Lifestyle for Students with Disability in COVID-19. Health Education and Health Promotion, 10(1), 63–67.

Strunk, J., Morgan, L., Reaves, S., Verhaeghen, P., Duarte, A., & Gutchess, A. (2019). Retrospective Attention in Short-Term Memory Has a Lasting Effect on Long-Term Memory Across Age. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 74(8), 1317–1325. https://doi.org/10.1093/geronb/gby045

Sweller, J., van Merriënboer, J. J. G., & Paas, F. (2019). Cognitive Architecture and Instructional Design: 20 Years Later. Educational Psychology Review, 31(2), 261–292. https://doi.org/10.1007/s10648-019-09465-5

Weber, A. C., Bogler, L., & Vollmer, S. (2024). Formal vs. informal mathematics: Assessing numeracy with school and market items in a large sample of school-aged children in North-West Nigeria. Economics of Education Review, 102. https://doi.org/10.1016/j.econedurev.2024.102564




DOI: https://doi.org/10.15408/es.v17i1.45268

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 EDUSAINS

slot demo

slot demo

slot gacor

slot demo

slot gacor

slot demo

slot gacor

demo slot

This work is licensed under a  Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

EDUSAINS | P-ISSN: 1979-7281 | E-ISSN: 2443-1281

 Web Analytics Made Easy - StatCounterView My Stats