Nurma Yunita Indriyanti, Sulistyo Saputro, Rizki Lukman Sungkar





A learning model has its characteristics with advantages and disadvantages. A Teacher has a particular way of delivering chemistry materials. This study aims to investigate the implementation of Thinking Aloud Pair Problem Solving (TAPPS) and Problem Posing (PP) to enhance students' conceptual understanding of the topic of the mole concept. The learning model implemented was enriched with the tetrahedral chemistry representation, which included levels of the human element, macroscopic, sub-microscopic, and symbolic. This research used a quasi-experimental method with a randomized pretest-posttest comparison group research design. Data collection used paper-and-pencil tests to sixty-four grade 10 students in a public high school in Sragen, Indonesia. Data analysis employed an independent sample t-test. The research findings indicated that the PP model was able to generate a higher degree of students' conceptual understanding than the TAPPS model and have more students with sound conceptual understanding than the TAPPS model. The chemistry teaching integrated with the tetrahedral chemistry representation increased students' sub-microscopic and symbolic levels of understanding. The new approach should be embedded in every chemistry learning model for enhancing students' understanding.


Sebuah model pembelajaran mempunyai ciri tersendiri dengan kelebihan dan kekurangannya. Guru mempunyai cara khusus dalam menyampaikan materi kimia. Penelitian ini bertujuan untuk menyelidiki penerapan Thinking Aloud Pair Problem Solving (TAPPS) dan Problem Posing (PP) untuk meningkatkan tingkat pemahaman konseptual siswa dalam materi konsep mol. Model pembelajaran yang diterapkan tersebut diperkaya dengan representasi tetrahedral kimia, yang mencakup level human element, makroskopis, submikroskopis, dan simbolik. Penelitian ini menggunakan metode eksperimen semu dengan desain penelitian komparasi grup pretest-posttest yang diacak. Pengumpulan data menggunakan tes tertulis terhadap 64 siswa kelas 10 dari salah satu SMA di Sragen, Indonesia.  Analisis data menggunakan independent sample t-test. Hasil penelitian ini mengindikasikan bahwa model PP mampu menghasilkan tingkat pemahaman konseptual siswa yang lebih tinggi daripada model TAPPS. Pembelajaran kimia yang terintegrasi dengan representasi tetrahedral kimia mampu meningkatkan tingkat pemahaman sub-mikroskopis dan simbolis siswa. Pendekatan baru tersebut perlu dimasukkan di setiap model pembelajaran kimia untuk meningkatkan pemahaman siswa.


Chemistry teaching; mole concept; conceptual understanding; problem-posing; thinking aloud pair problem-solving; Pembelajaran kimia; konsep mol; pemahaman konsep; problem posing; thinking aloud pair problem solving

Full Text:



Abrahams, I., & Millar, R. (2008). Does practical work really work? A study of the effectiveness of practical work as a teaching and learning method in school science. International Journal of Science Education, 30(14), 1945–1969.

Arikan, E. E., Unal, H., & Ozdemir, A. S. (2012). Comparative analysis of problem-posing ability between the Anatolian high school students and the public high school students located in Bagcilar district of Istanbul. Procedia - Social and Behavioral Sciences, 46, 926–930.

Arıkan, E. E., & Ünal, H. (2015). Investigation of Problem-Solving and Problem-Posing Abilities of Seventh-Grade Students. Educational Sciences: Theory & Practice, 15(5), 1403–1416.

Aschbacher, P. R., Li, E., & Roth, E. J. (2010). Is science me? High school students’ identities, participation and aspirations in science, engineering, and medicine. Journal of Research in Science Teaching, 47(5), 564–582.

Baars, B. J., & Gage, N. M. (2010). Chapter 10 - Thinking and problem solving. In B. J. Baars & N. M. B. T.-C. Gage Brain, and Consciousness (Second Edition) (Eds.) (pp. 344–369). London: Academic Press.

Barnhart, T., & van Es, E. (2015). Studying teacher noticing: Examining the relationship among pre-service science teachers’ ability to attend, analyze and respond to student thinking. Teaching and Teacher Education, 45, 83–93.

Bautista, R. G. (2012). The Convergence of Mastery Learning Approach and Self-regulated Learning Strategy in Teaching Biology. Journal of Education and Practice, 3(10), 25–32.

Bernacki, M., Nokes-Malach, T., Richey, J. E., & Belenky, D. M. (2016). Science diaries: a brief writing intervention to improve motivation to learn science. Educational Psychology, 36(1), 26–46.

BouJaoude, S., & Barakat, H. (2003). Students’ Problem Solving Strategies in Stoichiometry and their Relationship to Conceptual Understanding and Learning Approaches. Electronic Journal of Science Education, 7(3), 1–42.

Burmeister, M., Rauch, F., & Eilks, I. (2012). Education for Sustainable Development (ESD) and Chemistry Education. Chemistry Education: Research and Practice, 13(2), 59–68.

Chittleborough, G., & Treagust, D. F. (2007). The Modelling Ability of Non-major Chemistry Students and their Understanding of the Sub-microscopic Level. Chemistry Education: Research and Practice, 8(3), 274.

Furió, C., Azcona, R., & Guisasola, J. (2013). The Learning and Teaching of the Concepts “Amount of Substance” and “Mole”: A Review of the Literature. Chemistry Education: Research and Practice, 11(4), 1593–1597.

Furtak, E. M., Seidel, T., Iverson, H., & Briggs, D. C. (2012). Experimental and Quasi-Experimental Studies of Inquiry-Based Science Teaching: A Meta-Analysis. Review of Educational Research, 82(3), 300–329.

Garritz, A. (2013). Teaching Chemistry -A Studybook: A Practical Guide and Textbook for Student Teachers, Teacher Trainees and Teachers. Educacion Quimica, 24(4), 423–425.

Georgiadou, A., & Tsaparlis, G. (2000). Chemistry Teaching in Lower Secondary School with Methods Based on: a) Psychological Theories; b) the Macro, Representational, and Submicro Levels of Chemistry. Chemistry Education: Research and Practice in Europe, 1(2), 217–226.

Gulacar, O., Overton, T. L., Bowman, C. R., & Fynewever, H. (2013). A Novel Code System for Revealing Sources of Students’ Difficulties with Stoichiometry. Chemistry Education: Research and Practice, 14(4), 507–515.

Indriyanti, N. Y., & Barke, H.-D. (2014). Teaching the Mole Through Experiential Learning for a Sustainable Future. Science Education Research and Education for Sustainable Development, 12, 261–266.

Indriyanti, N. Y., & Barke, H.-D. (2017). Teaching the Mole Concept with Sub-micro Level: Do the Students Perform Better? AIP Conference Proceedings, 1868.

Işik, C., Kar, T., Yalçin, T., & Zehir, K. (2011). Prospective teachers’ skills in problem posing with regard to different problem posing models. Procedia - Social and Behavioral Sciences, 15, 485–489.

Johnstone, A. H. (2000). Teaching of Chemistry - Logical or Psychological? Chemistry Education: Research and Practice in Europe, 1(1), 9–15.

Jonassen, D. H. (2004). Learning to Solve Problems: An Instructional Design Guide. San Francisco: Pfeiffer A Wiley Imprint.

Kapıcı, H. Ö., & Savaşcı-Açıkalın, F. (2015). Examination of Visuals about the Particulate Nature of Matter in Turkish Middle School Science Textbooks. Chemistry Education: Research and Practice, 16(3), 518–536.

Khang, G. N., & Sai, C. L. (1987). Secondary School Students’ Difficulties in Learning the ‘Mole Concept’ — A Preliminary Study in Singapore. Singapore Journal of Education, 8(1), 80–88.

Kisa, M. T., & Stein, M. K. (2015). Learning to See Teaching in New Ways: A Foundation for Maintaining Cognitive Demand. American Educational Research Journal, 52(1), 105–136.

Kousathana, M., & Tsaparlis, G. (2002). Students’ Errors in Solving Numerical Chemical-Equilibrium Problems. Chemistry Education: Research and Practice, 3(1), 5.

Land, T. J. (2017). Teacher attention to number choice in problem posing. Journal of Mathematical Behavior, 45, 35–46.

Lee, K.-W. L., Tang, W.-U., Goh, N.-K., & Chia, L.-S. (2001). The Predicting Role of Cognitive Variables in Problem Solving in Mole Concept. Chemistry Education: Research and Practice in Europe, 2(3), 285–301.

Lee, L. K. W. (1998). Thinking Aloud about Pair Problem Solving in Chemistry. Teaching and Learning, 18(2), 89–95.

Libao, N. J. P., Sagun, J. J. B., Tamangan, E. A., Pattalitan, A. P., Dupa, M. E. D., & Bautista, R. G. (2016). Science learning motivation as correlate of students’ academic performances. Journal of Technology and Science Education, 6(3), 209.

Mahaffy, P. (2004). The Future Shape of Chemistry Education. Chemistry Education: Research and Practice, 5(3), 229–245.

Mahaffy, P. (2006). Moving Chemistry Education into 3D: A Tetrahedral Metaphor for Understanding Chemistry. Union Carbide Award for Chemical Education. Journal of Chemical Education, 83(1), 49.

Noh, T., Jeon, K., & Huffman, D. (2005). The Effects of Thinking Aloud Pair Problem Solving on High School Students’ Chemistry Problem-Solving Performance and Verbal Interactions. Journal of Chemical Education, 82(10), 1558.

Pekdag, B., & Azizoglu, N. (2013). Semantic Mistakes and Didactic Difficulties in Teaching the “‘Amount of Substance’” Concept: a Useful Model. Chemistry Education: Research and Practice, 14(14), 117–129.

Pelczer, I., Singer, F. M., & Voica, C. (2013). Cognitive Framing: A Case in Problem Posing. Procedia - Social and Behavioral Sciences, 78, 195–199.

Rahhou, A., Kaddari, F., Elachqar, A., & Oudrhiri, M. (2015). Infinity Small Concepts in the Learning of Chemistry. Procedia - Social and Behavioral Sciences, 191, 1337–1343.

Rau, M. A., Bowman, H. E., & Moore, J. W. (2017). An Adaptive Collaboration Script for Learning with Multiple Visual Representations in Chemistry. Computers and Education, 109, 38–55.

Schmidt, H.-J., & Jigneus, C. (2003). Students´ Strategies in Solving Algorithmic Stoichiometri Problems. Chemistry Education: Research and Practice, 4(3), 305–317.

Şengül, S., & Katranci, Y. (2012). Problem Solving and Problem Posing Skills of Prospective Mathematics Teachers about the ‘Sets’ Subject. Procedia - Social and Behavioral Sciences, 69(262), 1650–1655.

Shehu, G. (2015). The Effect of Problem-Solving Instructional Strategies on Students’ Learning Outcomes in Senior Secondary School Chemistry. IOSR Journal of Research & Method in Education (IOSR-JRME), 5(1), 10–14.

Sheldrake, R., Mujtaba, T., & Reiss, M. J. (2017). Science teaching and students’ attitudes and aspirations: The importance of conveying the applications and relevance of science. International Journal of Educational Research, 85, 167–183.

Short, E. J., Evans, S. W., Friebert, S. E., & Schatschneider, C. W. (1991). Thinking aloud during problem solving: Facilitation effects. Learning and Individual Differences, 3(2), 109–122.

Silver, E. (1994). On Mathematical Problem Posing.pdf. For the Learning of Mathematics, 14(1), 19–28.

Silver, E., & Cai, J. (1996). An Analysis of Arithmetic Problem Posing by Middle School Students. Journal for Research in Mathematics Education, 27(5), 521.

Swarat, S., Ortony, A., & Revelle, W. (2012). Activity matters: Understanding student interest in school science. Journal of Research in Science Teaching, 49(4), 515–537.

Thompson, G. H., & Bennett, J. (2013). Science Teaching and Learning Activities and Students’ Engagement in Science. International Journal of Science Education, 35(8), 1325–1343.

Uzuntiryaki, E., & Boz, Y. (2007). Turkish Pre-Service Teachers ’ Beliefs about the Importance of Teaching Chemistry. Australian Journal of Teacher Education, 32(4), 1–16.

Whimbey, A., & Lochhead, J. (1986). Problem Solving & Comprehension. Fourth Edition. (6th ed.). New Jersey: Lawrence Erlbaum Associates.

Zarotiadou, E., & Tsaparlis, G. (2000). Teaching Lower-Secondary Chemistry With a Piagetian Constructivist and an Ausbelian Meaningful-Receptive Method: a Longitudinal Comparison. Chemistry Education: Research and Practice, 1(January 2000), 37.

DOI: Abstract - 0 PDF - 0


  • There are currently no refbacks.

Copyright (c) 2023 Nurma Yunita Indriyanti, Sulistyo Saputro, Rizki Lukman Sungkar

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

EDUSAINS.  P-ISSN:1979-7281

 Web Analytics Made Easy - StatCounterView My Stats