PENGARUH SCIENCE ADAPTIVE ASSESSMENT TOOL BERBASIS GAYA BELAJAR KOLB TERHADAP KETERAMPILAN BERPIKIR TINGKAT TINGGI

Zulfiani Zulfiani, Iwan Permana Suwarna

Abstract


THE EFFECT OF SCIENCE ADAPTIVE ASSESSMENT TOOL BASED ON KOLB LEARNING STYLE ON HIGH-LEVEL THINKING SKILLS

Abstract

This study aimed to determine the effect of the Science Adaptive Assessment Tool (SAA Tool) based on the KOLB learning style on student's high order thinking skills (HOTS). This study used a quantitative quasi-experiment method with a post-test only design. The subjects in this study were 79 students of 8th grade at SMP Al- Zahra Indonesia Tangerang Selatan in the 2018/2019 school year who studied the material of Living organisms and Simple Machine. The results showed that there was a significant difference between the student's higher-order thinking skills who used Biology and Physics's SAA Tool compared with the control class. Biology's SAA Tool influences the results of higher-order thinking skills towards four learning styles. They affect of diverger, assimilator, converger, and accommodator. The Physics's SAA Tool influences the results of higher-order thinking skills on two learning styles of diverger and accommodator. The results of this study indicate the potential application of the SAA Tool as an answer to the problems of digital assessment to measure higher-order thinking skills as one of the dominant thinking skills of the 21st-century skills.

Keywords: Science Adaptive Assessment Tool (SAA Tool); Integrated Science; High Order Thinking Skill (HOTS)

Abstrak

Penelitian ini bertujuan untuk mengetahui pengaruh Science Adaptive Assessment Tool (SAA Tool) berbasis gaya belajar KOLB terhadap  keterampilan berpikir tingkat tinggi peserta didik. Metode penelitian yang digunakan yaitu metode kuantitatif kuasi eksperimen dengan desain post test only. Subyek penelitian ini adalah 79 peserta didik kelas 8 SMP Al-Zahra Indonesia Tangerang Selatan tahun pelajaran 2019/2020 yang mempelajari materi Sistem Gerak Makhluk Hidup dan Pesawat Sederhana. Hasil penelitian menunjukkan bahwa terdapat perbedaan yang signifikan antara hasil keterampilan berpikir tingkat tinggi peserta didik yang menggunakan SAA Tool IPA Biologi maupun IPA Fisika dibandingkan kelas kontrol. SAA Tool IPA Biologi mempengaruhi hasil keterampilan berpikir tingkat tinggi terhadap 4 gaya belajar diverger, asimilator, konverger, dan akomodator. Sementara SAA Tool IPA Fisika mempengaruhi hasil keterampilan berpikir tingkat tinggi terhadap 2 gaya belajar diverger dan akomodator. Hasil penelitian ini menunjukkan potensi aplikasi SAA Tool sebagai jawaban problematika asesmen digital untuk mengukur keterampilan berpikir tingkat tinggi sebagai salah satu skill berpikir dominan keterampilan abad 21.

Kata Kunci: Science Adaptive Assessment Tool (SAA Tool); IPA Terpadu; Keterampilan Berpikir Tingkat Tinggi (HOTS)

 


Keywords


Science Adaptive Assessment Tool (SAA Tool), Integrated Science, High Order Thinking Skill (HOTS)

Full Text:

PDF

References


Anderson, L. W. and Krathwohl, D. R. (2001) ‘A revision of Bloom’s taxonomy of educational objectives’, A Taxonomy for Learning, Teaching and Assessing. Longman, New York.

Arikunto, S. (2014) ‘Dasar-Dasar Evaluasi Pendidikan. Jakarta: Bumi Aksara.’, Bumi Aksara, 137, p. 142.

Beauchamp‐Akatova, E. (2009) ‘Towards integrated decision‐making for adaptive learning: evaluation of systems as fit for purpose’, Journal of Risk Research. Taylor & Francis, 12(3–4), pp. 361–373.

Beck, J. (2007) ‘An Exploration of the Relationship Between Case Study Methodology and Learning Style Preference’, Journal of Science Teacher Education, 18(3), pp. 423–430. doi: 10.1007/s10972-007-9056-5.

Bruha, I. (1989) ‘Defining Adaptive and Learning Systems’, Cybernetics and Systems, 20(1), pp. 77–88. doi: 10.1080/01969728908902194.

Chang, A. C. (2014) ‘ELL student engagement in computer-assisted language learning tasks’.

Darwas, R. (2017) ‘Sistem Pendukung Keputusan Penempatan Karyawan Menggunakan Metode Profile Matching’, Edik Informatika, 3(2), pp. 136–146.

Felder, R. and Silverman, L. (1988) ‘Learning and teaching styles in engineering education’, Engineering education, 78(June), pp. 674–681. doi: 10.1109/FIE.2008.4720326.

Ferrão, M. E. and Prata, P. (2014) ‘Item response models in computerized adaptive testing: a simulation study’, in International Conference on Computational Science and Its Applications. Springer, pp. 552–565.

Grasha, A. F. (1982) ‘The Grasha-Riechmann student learning style scales: Research findings and applications’, Student Learning Styles and Brain Behavior, Reston, VA: NASSP.

Honey, P. and Mumford, A. (1992) ‘The manual of learning styles’. Peter Honey Maidenhead.

Kolb, D. A. (1984) ‘The process of experiential learning. Experiential learning: experience as the source of learning and development’, in : Prentice-Hall, Inc., pp. 20–38.

Kolb, D. A. (2014) Experiential learning: Experience as the source of learning and development. FT press.

Osman, K. and Kaur, S. J. (2014) ‘Evaluating Biology Achievement Scores in an ICT integrated PBL Environment.’, Eurasia Journal of Mathematics, Science & Technology Education, 10(3).

Özyurt, Ö. and Özyurt, H. (2015) ‘Learning style based individualized adaptive e-learning environments: Content analysis of the articles published from 2005 to 2014’, Computers in Human Behavior. Elsevier, 52, pp. 349–358.

Sangineto, E. et al. (2008) ‘Adaptive course generation through learning styles representation’, Universal Access in the Information Society. Springer, 7(1–2), pp. 1–23.

Shaw, G. and Marlow, N. (1999) ‘The role of student learning styles, gender, attitudes and perceptions on information and communication technology assisted learning’, Computers & education. Elsevier, 33(4), pp. 223–234.

Siadaty, M. and Taghiyareh, F. (2007) ‘PALS2: Pedagogically adaptive learning system based on learning styles’, in Seventh IEEE International Conference on Advanced Learning Technologies (ICALT 2007). IEEE, pp. 616–618.

Stash, N. (2007) ‘Incorporating cognitive/learning styles in a general-purpose adaptive hypermedia system’, ACM SIGWEB Newsletter. ACM New York, NY, USA, 2007(Winter), pp. 3-es.

Sterbini, A. and Temperini, M. (2009) ‘Adaptive construction and delivery of web-based learning paths’, in 2009 39th IEEE Frontiers in Education Conference. IEEE, pp. 1–6.

Taylor, D. H. (2017) ‘Workplace L& D in 2017’, Training & Development. Australian Institute of Training and Development, 44(1), p. 17.

Tennyson, R. (1984) ‘Artificial intelligence methods in computer-based instructional design’, Journal of Instructional Development. Springer, 7(3), p. 17.

Truong, H. M. (2016a) ‘Computers in Human Behavior Integrating learning styles and adaptive e-learning system : Current developments , problems and opportunities’, Computers in Human Behavior. Elsevier Ltd, 55, pp. 1185–1193. doi: 10.1016/j.chb.2015.02.014.

Truong, H. M. (2016b) ‘Integrating learning styles and adaptive e-learning system: Current developments, problems and opportunities’, Computers in human behavior. Elsevier, 55, pp. 1185–1193.

Vandewaetere, M., Desmet, P. and Clarebout, G. (2011) ‘The contribution of learner characteristics in the development of computer-based adaptive learning environments’, Computers in Human Behavior. Elsevier, 27(1), pp. 118–130.

Weiss, D. J. (2004) ‘Computerized adaptive testing for effective and efficient measurement in counseling and education’, Measurement and Evaluation in Counseling and Development. Taylor & Francis, 37(2), pp. 70–84.

Yee, M. H., Md Yunos, J., Hassan, R., Tee, T. K., Mohamad, M. M., & Othman, W et al. (2015) ‘Disparity of learning styles and higher order thinking skills among technical students’, Procedia-Social and Behavioral Sciences. Elsevier Ltd., 204, pp. 143–152.

Zulfiani, Z. and Suwarna, I. P. (2019) Efektivitas Science Computerized Adaptive Assessment Tool untuk Mengukur Keterampilan Abad 21. Jakarta.

Zulfiani, Z, Suwarna, I. P. and Miranto, S. (2018) Efektivitas Media Belajar IPA Science Education Adaptive Learning System Versi Android . Laporan Penelitian UIN Jakarta.

Zulfiani, Z., Suwarna, I. P. and Miranto, S. (2018) ‘SCIENCE EDUCATION ADAPTIVE LEARNING SYSTEM AS A COMPUTER-BASED SCIENCE LEARNING WITH LEARNING STYLE VARIATIONS.’, Journal of Baltic Science Education.




DOI: https://doi.org/10.15408/es.v11i2.13361 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


@ EDUSAINS.  P-ISSN:1979-7281;E-ISSN:2443-1281

This is an open access article under CC-BY-SA license

 

Web Analytics Made Easy - StatCounter View My Stats