Spatial Analysis of Vegetation Density in Langsa City Using NDVI Index
DOI:
https://doi.org/10.15408/kauniyah.v19i1.44468Abstract
This study aims to analyze the distribution of vegetation density in Langsa City using the Normalized Difference Vegetation Index (NDVI). The research was conducted from June to October 2024, covering a study area of 21,881.41 ha. The method used is remote sensing, using Sentinel-2A satellite imagery, along with Geographic Information System (GIS) software, specifically ArcGIS, for mapping and spatial analysis. The NDVI classification results show five land cover categories based on NDVI value ranges. NDVI Class 1 (-0.38 to -0.02) includes non-vegetated land and water bodies. NDVI Class 2 (-0.02–0.20) indicates very low greenness, typically consisting of bare land. NDVI Class 3 (0.20–0.38) represents low greenness, which includes built-up areas. NDVI Class 4 (0.38–0.54) includes moderate greenness, typically found in plantations or fields, while NDVI Class 5 (0.54–0.83) represents high greenness, covering areas such as shrubs, forests, and mangroves. This analysis provides valuable information for land use planning and environmental management based on spatial vegetation data. The results of this study are expected to serve as a basis for policy-making that supports the sustainable management and conservation of vegetation in Langsa City.
References
Annisa, A. Y. N., Pribadi, R., & Pratikto, I. (2019). Analisis perubahan luasan hutan mangrove di Kecamatan Brebes dan Wanasari, Kabupaten Brebes menggunakan citra satelit landsat Tahun 2008, 2013 dan 2018. Journal of Marine Research, 8(1), 27–35. doi: 10.14710/jmr.v8i1.24323.
Armanda, A., Mubarak, M., & Elizal, E. (2021). Analysis of land cover changes in mangrove vegetation using landsat image data in Coastal, Sungai Apit District, Siak Regency, Riau Province. Asian Journal of Aquatic Sciences, 4 (2), 154–162. doi: 10.31258/ajoas.4.2.154-162.
Badan Pusat Statistik Kota Langsa. (2023). Langsa City in Figures. Badan Pusat Statistik Langsa, Aceh.
Hickmah, N., Maslukah, L., Wulandari, S. Y., Sugianto, D. N., & Wirasatriya, A. (2021). Kajian stok karbon organik dalam sedimen di Area Vegetasi Mangrove Karimunjawa. Indonesian Journal of Oceanography, 3 (4), 419–426. doi: 10.14710/ijoce.v3i4.12494.
Hidayati, I. N., Suharyadi, R., & Danoedoro, P. (2019). Exploring spectral index band and vegetation indices for estimating vegetation area. Indonesian Journal of Geography, 50(2), 211–221. doi: 10.22146/ijg.38981.
Karmila, D., Jauhari, A., & Kanti, R. (2020). Estimasi nilai cadangan karbon menggunakan analisis NDVI (Normalized Difference Vegetation Index) di KHDTK Universitas Lambung Mangkurat. Jurnal Sylva Scienteae, 3 (3), 451-459. doi: 10.20527/jss.v3i3.2178.
Mayuftia, R., Hendrarto, B., & Hartoko, A. (2013). Tingkat kerusakan dan karbon mangrove dengan pendekatan data satelit NDVI (Normalized Difference Vegetation Index) di Desa Sidodadi Kabupaten Pesawaran Provinsi Lampung. Management of Aquatic Resources Journal (MAQUARES), 2(4), 146–154. doi: 10.14710/marj.v2i4.4278.
Philiani, I., Saputra, L., Harvianto, L., & Muzaki, A. A. (2016). Pemetaan vegetasi hutan mangrove menggunakan metode NDVI. Surya Octagon Interdisciplinary Journal of Technology, 1(2), 211–222. doi: 10.31219/osf.io/c8k6j.
Prayudha, B., Ulumuddin, Y. I., Siregar, V., Suyarso, Agus, S. B., Prasetyo, L. B., Anggraini, K., & Salatalohi, A. (2023). Geomorphological and hydrological changes play a critical role in mangrove forest degradation in a rapidly shrinking lagoon in Indonesia. AACL Bioflux, 16(1), 151–167. doi: 10.1016/j.mex.2024.102778.
Que, V. K. S., Prasetyo, S. Y. J., & Fibriani, C. (2019). Analisis perbedaan indeks vegetasi Normalized Difference Vegetation Index (NDVI) dan Normalized Burn Ratio (NBR) Kabupaten Pelalawan Menggunakan Citra Satelit Landsat 8. Indonesian Journal of Modeling and Computing, 1(2), 1–7.
Ruslana, Z. N., Klimatologi, S., & Semarang, K. I. (2020). Analisis indeks kerapatan vegetasi untuk identifikasi kejadian dan potensi puting beliung di wilayah Kabupaten Klaten. Megasains, 11(1), 1–12. doi: 10.46824/megasains.v11i02.9.
Sasmito, B., & Suprayogi, A. (2015). Model spasial aliran permukaan dan monitoring tutupan lahan di Kota Semarang. Jurnal Ilmiah Geomatika, 21(1), 1–8. doi: 10.14710/elipsoida.2019.5016.
Tampubolon, T., Juliani, R., & Hutahaean, J. (2019). Utilization of Landsat Satellite Imagery to observe environmental change at Sinabung Mountain Area. AISTSSE, 18, 1-7. doi: 10.4108/eai.18-10-2018.2287308.
Tarolli, P., & Mudd, S. M. (2020). Introduction to remote sensing of geomorphology. Developments in Earth Surface Processes, 23, 13–15.
Widyantara, AP., & Solihuddin, T. 2020. Mapping mangrove land area changes in the probolinggo coast using satellite imagery. Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital, 17(1), 75–87. doi: 10.30536/j.pjpdcd.2020.v17.a3216.
Wishnuputri, S., Withaningsih, S., & Parikesit, P. (2024). Estimation of carbon stock in mixed garden tree stands in Jatigede Subdistrict, Sumedang Regency using NDVI. In E3S Web of Conferences (ICYES), 495, 1-9.