Stability of Morphophysiological Characters, Tuber Yield, and FBPase Gene Expression in Transgenic Potato Cultivar IPB-CP3

Authors

  • Malik Nuris Suaidi IPB University
  • Aris Tjahjoleksono IPB University
  • M Miftahudin IPB University

DOI:

https://doi.org/10.15408/kauniyah.v19i1.43558

Keywords:

FBPase gene, Gene expression, IPB-CP3, Photosyntesis

Abstract

Potatoes are an essential agricultural commodity that needs to be genetically improved to increase productivity and meet industrial needs. The research aimed to evaluate the stability of the morpho-physiological characters, tuber yield, and transgene expression of transgenic potato cultivar IPB-CP3 harboring the FBPase gene in the G0 and G1 generations. The study was conducted by growing transgenic plants in a greenhouse and analyzing plant morpho-physiological characters, tuber yield, and gene expression. The results showed that transgenic plants had higher values in stem diameter (32.7–50.8%), number of leaves (33.9–41.2%), biomass dry weight (14.4–36.2%), photosynthetic rate (25.2–28.25%), and tuber weight (42.6–196.0%) than non-transgenic plants. However, there was no significant difference in plant height characters between the transgenic and non-transgenic plants. Transgenic plants consistently expressed the FBPase gene at higher level than the non-transgenic plants in the G0 and G1 generations. The research results suggest that overexpression of the FBPase gene increases plant growth and tuber yield. This finding implies agricultural practices, particularly in the context of crop improvement through genetic engineering.

Author Biographies

  • Malik Nuris Suaidi, IPB University

    Biotechnology Graduate Program Graduate School

  • Aris Tjahjoleksono, IPB University

    Department of BiologyFaculty of Mathematics and Natural Sciences

  • M Miftahudin, IPB University

    Department of BiologyFaculty of Mathematics and Natural Sciences

References

Akashi, K., Yoshida, K., Kuwano, M., Kajikawa, M., Yoshimura, K., Hoshiyasu, S., Inagaki, N., & Yokota, A. (2011). Dynamic changes in the leaf proteome of a C3 xerophyte, Citrullus lanatus (wild watermelon), in response to water deficit. Planta, 233(5), 947–960. https://doi.org/10.1007/s00425-010-1341-4

Akashi, K., Yoshimura, K., Kajikawa, M., Hanada, K., Kato, A., Katoh, A., Nanasato, Y., & Tsujimoto, H. (2016). Potential involvement of drought-induced Ran GTPase CLRan1 in root growth enhancement in a xerophyte wild watermelon. Bioscience, Biotechnology, and Biochemistry, 8451, 1–10. https://doi.org/10.1080/09168451.2016.1191328

BPS (The Central Bureau of Statistics of Indonesia). (2024). Statistik Hortikultura 2023. Badan Pusat Statistik.

Cho, M. H., Jang, A., Bhoo, S. H., Jeon, J. S., & Hahn, T. R. (2012). Manipulation of triose phosphate/phosphate translocator and cytosolic fructose-1,6-bisphosphatase, the key components in photosynthetic sucrose synthesis, enhances the source capacity of transgenic Arabidopsis plants. Photosynthesis Research, 111(3), 261–268. https://doi.org/10.1007/s11120-012-9720-2

Cui, X. Y., Chen, Z. Y., Wu, L., Liu, X. Q., Dong, Y. Y., Wang, F. W., & Li, H. Y. (2015). rbcS SRS4 promoter from Glycine max and its expression activity in transgenic tobacco. Genetics and Molecular Research, 14(3), 7395–7405. https://doi.org/10.4238/2015.July.3.15

Daie, J. (1993). Cytosolic fructose-1,6-bisphosphatase: A key enzyme in the sucrose biosynthetic pathway. Photosynthesis Research, 38(1), 5–14. https://doi.org/10.1007/BF00015056

Fatahillah, Suharsono, & Widyastuti, U. (2016). Genetic transformation of potato (Solanum tuberosum L.) cv. Nooksack with FBPase/ClRan1 genes mediated by Agrobacterium tumefacien. Pak. J. Biotechnol., 13(3), 187–192.

Foyer, C. H., Ruban, A. V., & Nixon, P. J. (2017). Photosynthesis solutions to enhance productivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1730), 3–6. https://doi.org/10.1098/rstb.2016.0374

Gervais, T., Creelman, A., Li, X. Q., Bizimungu, B., De Koeyer, D., & Dahal, K. (2021). Potato Response to Drought Stress: Physiological and Growth Basis. Frontiers in Plant Science, 12(August), 1–10. https://doi.org/10.3389/fpls.2021.698060

Guo, X., Duan, X., Wu, Y., Cheng, J., Zhang, J., Zhang, H., Li, B., Guo, X., Duan, X., Wu, Y., Cheng, J., Zhang, J., Zhang, H., & Li, B. (2018). Genetic Engineering of Maize (Zea mays L.) with Improved Grain Nutrients. https://doi.org/10.1021/acs.jafc.7b05390

Hameed, A., Zaidi, S. S. e. A., Shakir, S., & Mansoor, S. (2018). Applications of new breeding technologies for potato improvement. Frontiers in Plant Science, 9(925), 1–15. https://doi.org/10.3389/fpls.2018.00925

Iglesias, V. A., Moscone, E. A., Papp, I., Neuhuber, F., Michalowski, S., Phelan, T., Spiker, S., Matzke, M., & Matzke, A. J. M. (1997). Molecular and Cytogenetic Analyses of Stably and Unstably Expressed Transgene Loci in Tobacco. The Plant Cell, 9(8), 1251. https://doi.org/10.2307/3870379

Khamis, A. K., Asli, U. A., Sarjuni, M. N. H., Jalal, M. A., A. Karim, H. A., & Sulaiman, S. (2020). Relationship between Photosynthetic Rate and Stomatal Conductance, Intercellular CO2 Concentration, Transpiration Rate, Vapour Pressure Deficit and Photosynthetically Active Radiation in Sweet Corn (Zea mays). Journal of Sustainable Natural Resources, 1(2), 1–8. https://doi.org/10.30880/jsunr.2020.01.02.001

Kudo, N., Mano, K., Suganami, M., Kondo, E., Suzuki, Y., & Makino, A. (2020). Effects of overexpression of the Rubisco small subunit gene under the control of the Rubisco activase promoter on Rubisco contents of rice leaves at different positions. Soil Science and Plant Nutrition, 66(4), 569–578. https://doi.org/10.1080/00380768.2020.1780898

Larkin, R. P., Honeycutt, C. W., Griffin, T. S., Olanya, O. M., & He, Z. (2021). Potato growth and yield characteristics under different cropping system management strategies in northeastern u.S.†. Agronomy, 11(1). https://doi.org/10.3390/agronomy11010165

Li, Y., Ye, Q., He, D., Bai, H., & Wen, J. (2020). The ubiquity and coexistence of two FBPases in chloroplasts of photosynthetic eukaryotes and its evolutionary and functional implications. Plant Diversity, 42(2), 120–125. https://doi.org/10.1016/j.pld.2019.09.002

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262

Long, S. P., & Bernacchi, C. J. (2003). Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany, 54(392), 2393–2401. https://doi.org/10.1093/jxb/erg262

Minda, T. T., van der Molen, M. K., De Arellano, J. V. G., Chulda, K. C., & Struik, P. C. (2019). Responses of canopy growth and yield of potato cultivars to weather dynamics in a complex topography: Belg farming seasons in the Gamo Highlands, Ethiopia. Agronomy, 9(4). https://doi.org/10.3390/agronomy9040163

Mukherjee, S., Mukherjee, A., Das, P., Bandyopadhyay, S., Chattopadhyay, D., Chatterjee, J., & Majumder, A. L. (2021). A salt‐tolerant chloroplastic FBPase from Oryza coarctata confers improved photosynthesis with higher yield and multi‐stress tolerance to indica rice. Plant Cell, Tissue and Organ Culture, 145(3), 561–578. https://doi.org/10.1007/s11240-021-02026-1

Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Agsays with Tohaoco Tissue Cultures. Physiologia Plantarum, 15, 473–497. https://doi.org/doi.org/10.1111/j.1399-3054.1962.tb08052.x

Olivah, F. G. (2019). Genetic Engineering of Potato (Solanum tuberosum L.) Cultivar IPB CP1 with FBPase/ClRan1 Genes Mediated by Agrobacterium tumefaciens [tesis]. Bogor (ID): Sekolah Pascasarjana. IPB University.

Simkin, A. J., Lopez‐Calcagno, P. E., Davey, P. A., Headland, L. R., Lawson, T., Timm, S., Bauwe, H., & Raines, C. A. (2017). Simultaneous stimulation of sedoheptulose 1,7‐bisphosphatase, fructose 1,6‐bisphophate aldolase and the photorespiratory glycine decarboxylase‐H protein increases CO 2 assimilation, vegetative biomass and seed yield in Arabidopsis. Plant Biotechnology Journal, 15(7), 805–816. https://doi.org/10.1111/pbi.12676

Suharsono. (2002). Konstruksi pustaka genom kedelai kultivar Slamet. Hayati, 9(3), 67–70.

Susilawati. (2020). Ekspresi gen FB PASE/C1Ran1 pada tanaman kentang (Solanum tuberosum L.) kultivar nooksack transgenic generasi G1 [tesis]. Bogor (ID):Sekolah Pascasarjana. IPB University.

Tanabe, N., Tamoi, M., & Shigeoka, S. (2015). The sweet potato RbcS gene (IbRbcS1) promoter confers high-level and green tissue-specific expression of the GUS reporter gene in transgenic Arabidopsis. Gene, 567(2), 244–250. https://doi.org/10.1016/j.gene.2015.05.006

Taylor, S. H., & Long, S. P. (2017). Slow induction of photosynthesis on shade to sun transitions in wheat may cost at least 21% of productivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1730). https://doi.org/10.1098/rstb.2016.0543

Vreugdenhil, D., Bradshaw, J., Gebhardt, C., Govers, F., MacKerron, D. K. L., Taylor, M. A., & Ross, H. A. (2007). Potato Biology and Biotechnology: Advances and Perspectives. In Potato Biology and Biotechnology: Advances and Perspectives. https://doi.org/10.1016/B978-0-444-51018-1.X5040-4

Wang, X., Xu, Y., Han, Y., Bao, S., Du, J., Yuan, M., Xu, Z., & Chong, K. (2006). Overexpression of RAN1 in rice and Arabidopsis alters primordial meristem, mitotic progress, sensitivity to auxin. Plant Physiology, 140(1), 91–101. https://doi.org/10.1104/pp.105.071670

Wijayanti, A. K. (2022). Rekayasa Genetika Tanaman Kentang (Solanum tuberosum L.) Kultivar IPB CP3 Dengan Gen FBPase/ClRan1. IPB University.

Xu, P., & Cai, W. (2014). RAN1 is involved in plant cold resistance and development in rice (Oryza sativa). Journal of Experimental Botany, 65(12), 3277–3287. https://doi.org/10.1093/jxb/eru178

Yan-yan, L. I., Li-na, G. U. O., Cheng-zhen, L., Zhi-gang, M., Tahira, S., & San-dui, G. U. O. (2022). Overexpression of Brassica napus cytosolic fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase genes significantly enhanced tobacco growth and biomass. Journal of Integrative Agriculture, 21(1), 49–59. https://doi.org/10.1016/S2095-3119(20)63438-4

Downloads

Published

2025-10-31