Fabrikasi Nanotubes Titanium Dioksida (TiO2) Menggunakan Metode Hidrotermal
Abstract
Nanotubes received great attention because it has a high surface area. In this study, TiO2 nanotubes fabricated via hydrothermal method from synthesis of TiO2 nanoparticles via sol-gel method. Catalysts that have been synthesized later in the characterization by X-Ray Diffraction (XRD) to obtain the crystal size and crystallinity. Crystal size of TiO2 nanoparticles at a temperature of 450C is 13.78 nm. Then characterized by Transmission Electron Microscopy (TEM) to look at the formation of nanotubes. Characterization of TiO2 nanotubes with TEM shows that the structure of the tubes had already been formed TNTs although the growth has not been perfect. It can be seen from the structure TNTs who tend to be short and yet so irregular.
DOI: http://dx.doi.org/10.15408/jkv.v0i0.5036
Keywords
References
Adachi M, Murata Y, Takao J, Jiu J, Sukamoto M, Wang F. 2004. Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single–crystal-like-TiO2 nanowire made by the “orianted arachment” mechanism. Journal of the American Chemical Society. 126(45): 14943-14949.
Aji NR, Wibowo EAP, Ujiningtyas R, Wirasti H, Widiarti N. 2016. Sintesis komposit TiO2-bentonit dan aplikasinya untuk penurunan BOD dan COD Air Embung UNNES. Jurnal Kimia VALENSI: Jurnal Penelitian dan Pengembangan Ilmu Kimia. 2(2): 114-119.
Alivov Y, Fan YZ. 2009. A TiO2 nanostructure transformation: from ordered nanotubes to nanoparticles. Journal of Nanotechnology. 20(40): 405610.
Ashraf M, El-Fattah, MA, Dardir MM. 2014. Synthesis and characterization of titanium oxide nanotubes and its performance in epoxy nanocomposite coating. Journal of Progress in Organic Coatings. 78: 83-89.
Brown GN, Birks JW, Koval. 1992. Development and characterization of titanium-dioxide based semiconductors photoelectro chemical detector. Analysis Chemistry. 64(4): 427-434.
Desong W, Xiao L, Luo Q, Xiao L, Duan Y. 2011. Highly efficient visible light TiO2 photocatalyst prepared by sol–gel method at temperatures lower than 300 ºC. Journal of Hazardous Materials. 192(1): 150–159.
Ferdiansyah A. 2011. Fabrikasi Nanotubes TiO2 dengan Tingkat Nanokristalinitas Tinggi untuk Aplikasi Sel Surya Tersensitifikasi Zat Pewarna Melalui Teknik Hidrotermal. [Skripsi]. Depok (ID): Universitas Indonesia.
Fujhisima A, Zhang X. 2005. Titanium dioxide photocatalysis: present situation and future approaches. C.R Chimie. 9(5-6): 750-760.
Filponi L, Sutherland D. 2013. Nanotechnologies: Principles, Applications and Hands-on Activites. In Handbook of Research and Innovation Industrials and Technoogies. European Commision. B-1049 Brussels.
Gratzel M, O’Regan B. 1991. A low – cost. high-efficiency solar cell based on dye sensitized colloidal TiO2 films. Journal of Nature. 353: 737-740.
Hoyer O. 1996. Formation of a Titanium Dioxide Nanotube Array. Langmuir. 12(6): 1411-1413.
Hsin HO, Shang LL. 2007. Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application.: Taipe. Separation and Purification Technology. 58:179–191.
Kasuga T. 2006. Formation of titanium oxide nanotubes using chemical treatments and their characteristic properties. Journal of Thin Solid Films. 496(1): 141-145.
Kasuga T, Hiramatsu M, Hoson A, Sekino T & Nihara K. 1998. Formation of Titanium Oxide Nanotube. Langmuir. 14(12): 3160-3163.
Kolen'ko YV, Kirill A, Kovnir AI, Gavrilov AV, Garshev JF, Oleg L, Lebedev, Bulat R, Churagolov GVT, Masahiro Y. 2006. Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide. The Journal of Physical Chemistry B. 110(9): 4030-4038.
Law M. 2005. Nanowire dye-sensitized solar cells. Journal of Nat Mater. 4(6): 455-459.
Liu X, Liu Z, Jian Z, Xin Y, Dandan L, Si C, Wei C. 2011. Characteristics of N-doped TiO2 Nanotube Arrays by N-plasma for visible Light driven photocatalysis. [Thesis]. College of Chemical Engineering, Sichuan University, China.
Ou H, Lo SL. 2007. Review of titania nanotubes synthesized via the hydrothermal treatment: fabrication, modification, and application. Separation and Purification Technology. 58(1): 179-191.
Porras A, Teran T, Becerra OV, Yoshida MM, Villabos MR, Guaderma MG, Martinez JAA. 2015. Low-Temperature Synthesis and Characterization of anats TiO2 nanoparticls by an acid assisted sol-gel method. Journal of Alloys and Compounds. 647: 627-636.
Poudel B, Wang WZ, Dames C, Huang JY, Kunwar S, Wang, DZ, Banerjee D, Cgen G, Ren ZF. 2005. Formation of crystallized titania nanotubes and their transformation into nanowires. Journal of Nanotechnology. 16(9): 1935-1940.
Qiu J. 2007. Fabrication and characterization of TiO2 nanotube arrays having nanopores i their wall by double template assisted sol gel. Nanotechnology. 18(29):1-5.
Sekino T. 2010. Synthesis and applicatios of titanium oxide nanotubes. Journal of Inorganic and Metalic Nanotubular Materials. 117: 17-32.
Tan B, Wu Y. 2006. Dye-sensitized solar cells based on anatase tio2 nanoparticle/nanowire composites. The Journal of Physical Chemistry B. 110 (32): 15932-15938.
Tenne L, Margulis M, Genut G. 1992. Polyhedral and cylindrical structures of tungsten disulphide. Letters to Nature. 360: 444-446.
Xia PY, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H. 2003 One-dimensional nanostructures: synthesis, characterization, and applications. Journal of Advanced Materials. 15(5): 353-389.
DOI: 10.15408/jkv.v3i1.5036
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Atik Setyani, Emas Agus Prastyo Wibowo
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.