Search for SARS-CoV-2 Inhibitors. Is it still needed? Molecular Docking Study of Teicoplanin Derivatives and Vancomycin against SARS-CoV-2 Mpro

Sri Mulyani, Nova Dwi Lestari, Imam Samodra, Fajar Rakhman Wibowo, Elfi Susanti VH, Tonang Dwi Ardyanto

Abstract


Coronaviruses have been known since 2002 in the case of SARS (Severe Acute Respiratory Syndrome). SARS-CoV-2, the cause of the COVID-19 pandemic, is believed to be an evolution of the SARS-causing coronavirus (SARS-CoV). This evolution shows the complex interaction dynamics between the virus and the host, which have characterized the emergence of new SARS-CoV-2 strain variations until now. Therefore, the search for these antiviral drugs is still critical. MPro is one of the important proteins for the life cycle of pathogenic coronaviruses, so it is an attractive target for developing drugs that inhibit this virus. This study examined the interaction of teicoplanin derivatives and vancomycin as SARS-CoV-2 MPro (6LU7) inhibitors through molecular docking with Autodock Vina. The smallest RMSD value was selected and stored to calculate the energy value. The image of atoms in the ligand and receptor was processed with Autodock Tools, LigPlus, and PyMOL. The study showed that teicoplanin derivatives such as teicoplanin aglycone, teicoplanin-A3-1, and vancomycin had the potential as SARS-CoV-2 Mpro inhibitors. Based on the interaction at the active site and the obtained ΔG values, even the teicoplanin aglycon had a more significant inhibitory potential than other potent inhibitors such as N3.

Keywords


Inhibitors; molecular docking; Mpro COVID-19; 6LU7; teicoplanin

References


Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta Biomed. 2020;91(1):157-160. doi:10.23750/abm.v91i1.9397

Nanshan Chen, Min Zhou, Xuan Dong, Jieming Qu, Fengyun Gong, Yang Han, Yang Qiu, Jingli Wang, Ying Liu, Yuan Wei, Jia’an Xia, Ting Yu, Xinxin Zhang LZ. Epidemiological and clinical characteristics characteristics of 99 Cases of 2019 Novel Coronavirus Pneumonia in Wuhan, China: A Descript study. Lancet. 2020;395(10223):507-513.

Nikolić AR. A Search for Sars‐CoV‐2 Main Protease Inhibitors: Synthesis and Docking Study of Steroidal Dinitriles. Chemistryselect. 2024;9(10). doi:10.1002/slct.202304164

Samson S, Lord É, Makarenkov V. Assessing the emergence time of SARS-CoV-2 zoonotic spillover. PLoS One. 2024;19(4 April):1-16. doi:10.1371/journal.pone.0301195

Zhan J, Liu QS, Sun Z, Zhou Q, Hu L, Qu G, Zhang J, Zhao B, Jiang G. Environmental Impacts on the Transmission and Evolution of COVID-19 Combing the Knowledge of Pathogenic Respiratory Coronaviruses. Environ Pollut. 2020;267:115621. doi:10.1016/j.envpol.2020.115621

Lengauer T, Rarey M. Computational methods for biomolecular docking. Curr Opin Struct Biol. 1996;6(3):402-406. doi:10.1016/S0959-440X(96)80061-3

Liu X, Wang XJ. Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. J Genet Genomics. 2020;47(2):119-121. doi:10.1016/j.jgg.2020.02.001

Anand K, Palm GJ, Mesters JR, Siddell SG, Ziebuhr J, Hilgenfeld R. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra α-helical domain. EMBO J. 2002;21(13):3213-3224. doi:10.1093/emboj/cdf327

Dai W, Zhang B, Jiang XM, et al. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science (80- ). 2020;368(6497):1331-1335. doi:10.1126/science.abb4489

Santiago-Silva KM d. Molecular Modelling Studies and in Vitro Enzymatic Assays Identified a 4-(Nitrobenzyl)guanidine Derivative as Inhibitor of SARS-CoV-2 Mpro. Sci Rep. 2024;14(1). doi:10.1038/s41598-024-59292-0

Huang S, Zou X. Efficient molecular docking of NMR structures: Application to HIV‐1 protease. Protein Sci. 2007;16(1):43-51. doi:10.1110/ps.062501507

Hou T, Xu X. Recent Development and Application of Virtual Screening in Drug Discovery: An Overview. In: Frontiers in Medicinal Chemistry - (Volume 3). BENTHAM SCIENCE PUBLISHERS; 2012:675-703. doi:10.2174/978160805206610603010675

Tripathi PK, Upadhyay S, Singh MR, et al. Screening and Evaluation of Approved Drugs as Inhibitors of Main Protease of SARS-CoV-2. Int J Biol Macromol. 2020;164:2622-2631. doi:10.1016/j.ijbiomac.2020.08.166

Azam F, Eid EEM, Almutairi A. Targeting SARS-CoV-2 main protease by teicoplanin: A mechanistic insight by docking, MM/GBSA and molecular dynamics simulation. J Mol Struct. 2021;1246(July). doi:https://doi.org/10.1016/j.molstruc.2021.131124

Yu F, Pan T, Huang F, et al. Glycopeptide Antibiotic Teicoplanin Inhibits Cell Entry of SARS-CoV-2 by Suppressing the Proteolytic Activity of Cathepsin L. Front Microbiol. 2022;13(April):1-17. doi:10.3389/fmicb.2022.884034

Khamesipour F, Hashemian SM, Tabarsi P, Velayati AA. A review of teicoplanin used in the prevention and treatment of serious infections caused by gram-positive bacteria and compared its effects with some other antibiotics. Biomed Pharmacol J. 2015;8(1):513-521. doi:10.13005/bpj/641

Reddy B N, Babu P A. Study on Post-Operative Infections With Teicoplanin Prophylaxis in Total Knee Arthroplasty. J Evol Med Dent Sci. 2017;6(39):3160-3162. doi:10.14260/jemds/2017/682

Ceccarelli G, Alessandri F, D’Ettorre G, Borrazzo C, Spagnolello O, Oliva A, Ruberto F, Mastroianni CM, Pugliese F, Venditti M. Is teicoplanin a complementary treatment option for COVID-19? The question remains. Int J Antimicrob Agents. 2020;56(2):106029. doi:10.1016/j.ijantimicag.2020.106029

Azam F. Targeting SARS-CoV-2 main protease by teicoplanin: a mechanistic insight by in silico studies. ChemRxiv. Published online 2020.

Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y, yu Y, Wang L, Yang K, Liu F, Jiang R, Yang X, You T, Liu X, Yang X, Bai F, Liu H, Liu X, Guddar LW, Xu W, Xiao G, Qin C, Shi Z, Jiang H, Rao Z, Yang H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582(7811):289-293. doi:10.1038/s41586-020-2223-y

Samodra I, Wibowo FR, Mulyani S. Molecular Docking Study on COVID-19 Drug Activity of Quercetin Derivatives with Glucose Groups as Potential Main Protease Inhibitor. AIP Conf Proc. 2023;2540(September). doi:10.1063/5.0105741

Jin X, Lian JS, Hu JH, Gao J, Zheng L, Zhang YM, Hao SR, Jia HY, Cai H, Zhang XL, Yu GD, Xu KJ, Wang XY, Gu JQ, Zhang SY, Ye CY, Jin CL, Lu YF, Yu X, Yu XP, Huang JR, Xu KL, Ni Q, Yu CB, Zhu B, Li YT, Liu J, Zhao H, Zhang X, Yu L, Guo YZ, Su JW, Tao, JJ, Lang GJ, Wu XX, Wu WR, Qv TT, Xiang DR, Yi P, Shi D, Chen Y, Ren Y, Qiu YQ, Li LJ, Sheng J, Yang Y. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 2020;69(6):1002-1009. doi:10.1136/gutjnl-2020-320926

Aziz HA, Camin YR, Prasasty VD. Therapeutic Potential of Quercetin Derivatives: In Silico Investigation of HIV-1 Protease Inhibition. J Trop Biodivers. 2024;4(2):67-82. doi:10.59689/bio.v4i2.215

Pratama AB, Herowati R, Ansory HM. Studi Docking Molekuler Senyawa Dalam Minyak Atsiri Pala (Myristica fragrans H.) Dan Senyawa Turunan Miristisin Terhadap Target Terapi Kanker Kulit. Maj Farm. 2021;17(2):233. doi:10.22146/farmaseutik.v17i2.59297

Voet D, Voet JG, Pratt CW. Fundamentals of Biochemistry Life at the Molecular Level. Vol 14. 4th ed. John Wiley & Sons, Inc.; 1941. doi:10.7326/0003-4819-14-8-1452_1

Basuki SA, Melinda N. Prediksi mekanisme kerja obat terhadap reseptornya secara in silico (studi pada antibiotika Sefotaksim). Res Rep. 2017;0(0):89-94. http://research-report.umm.ac.id/index.php/research-report/article/view/1367

Sardanelli AM, Isgro C, Palese LL. SARS-CoV-2 Main Protease Active Site Ligands in the Human Metabolome. Molecules. 2021;26:1-11. doi:https://doi.org/10.3390/ molecules26051409

Azam F, Eid EEM, Almutairi A. Targeting SARS-CoV-2 main protease by teicoplanin: A mechanistic insight by docking, MM/GBSA and molecular dynamics simulation. J Mol Struct. 2021;1246:131124. doi:10.1016/j.molstruc.2021.131124

Mukesh B, Rakesh K. Molecular Docking: A Review. Int J Res Ayurveda Pharm. 2011;2(6):1746-1751.

Trott O, Olson AJ. Software News and Updates AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J Comput Chem. 2009;31(2):455-461. doi:10.1002/jcc




DOI: 10.15408/jkv.v11i1.44709

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Sri Mulyani

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.