Green Synthesis of Zinc Oxide Particles using Banana Peels and Tea Leaves Extracts for Rhodamine B Photodegradation

Uji Pratomo, Natasha Fransisca, Zahra Afriani, Ayu Jelita Sinambela, Nazwa Alya Zahra, Nelson Indarto Suwarno, Husain Akbar Sumeru, Irwan Kurnia, Indah Primadona, Rudiawan Edwin

Abstract


Rhodamine B is a widely used dye in the textile sector. However, the wastewater produced during the dyeing process presents a notable source of pollution, contaminating water and posing a threat to aquatic ecosystems due to its presence in liquid waste. Photocatalysis is a technique for breaking down toxic textile dye waste a semiconductor as a catalyst, valued for its high sensitivity and eco-friendly nature. In this research, zinc oxide particles were synthesized via a green synthesis approach using precipitation, employing natural capping agents from banana peel and tea leaf to degrade the synthetic dye of rhodamine B. The catalyst material was characterized using X-ray diffraction (XRD), scanning electron microscope (SEM), and ultraviolet-visible diffuse reflectance (UV-DRS). The photodegradation performance of rhodamine B was determined under UV light exposure for 3 hours. The XRD spectra of ZnO show the specific peaks of 2θ at 31.8°, 34.5°, and 36.3° with a crystallinity value of around 79.50%. The SEM result shows that the morphology of ZnO is in cotton-like form with a minimum band gap of 3.17 eV. The cotton-like ZnO particles demonstrated superior photodegradation efficiency for Rhodamine B, achieving 61.8%, compared to 47.9% with pure ZnO. It suggests that synthesizing ZnO particles with banana peels and tea leaf extracts boosts photodegradation efficiency by up to 20% compared to pure ZnO. This research highlights the potential of utilizing eco-friendly and sustainable methods as a greener approach for reducing waste in environmental applications.


Keywords


Banana peels; photodegradation; rhodamine B; tea leaves; zinc oxide

References


Sudiarti T, Handayani NH, Rohmatulloh Y, Amelia SR, Yusuf RM, Ivansyah AL. Facile Synthesis of ZnO Nanoparticles for the Photodegradation of Rhodamine-B. J Kim Sains dan Apl. 2021;24(6):185-191. doi:10.14710/jksa.24.6.185-191

Al-Buriahi AK, Al-Gheethi AA, Senthil Kumar P, et al. Elimination of rhodamine B from textile wastewater using nanoparticle photocatalysts: A review for sustainable approaches. Chemosphere. 2022;287(P2):132162. doi:10.1016/j.chemosphere.2021.132162

He H, Chai K, Wu T, Qiu Z, Wang S, Hong J. Adsorption of Rhodamine B from Simulated Waste Water onto Kaolin-Bentonite Composites. Materials (Basel). 2022;15(12):1-15. doi:10.3390/ma15124058

Wang L, Zhao J, Liu H, Huang J. Design, modification and application of semiconductor photocatalysts. J Taiwan Inst Chem Eng. 2018;93:590-602. doi:10.1016/j.jtice.2018.09.004

Ong CB, Ng LY, Mohammad AW. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew Sustain Energy Rev. 2018;81(July 2016):536-551. doi:10.1016/j.rser.2017.08.020

Deka PT. Perbandingan Proses Fotodegradasi Pada Zat Warna Metil Jingga Menggunakan Zeolit, Katalis Fe2O3-Zeolit dan Sinar UV. J Pharm Sci. 2019;4(2):71-76. doi:10.53342/pharmasci.v4i2.139

Peleyeju MG, Arotiba OA. Recent trend in visible-light photoelectrocatalytic systems for degradation of organic contaminants in water/wastewater. Environ Sci Water Res Technol. 2018;4(10):1389-1411. doi:10.1039/c8ew00276b

Sharma DK, Shukla S, Sharma KK, Kumar V. A review on ZnO: Fundamental properties and applications. Mater Today Proc. 2020;49:3028-3035. doi:10.1016/j.matpr.2020.10.238

Moumen A, Kaur N, Poli N, Zappa D, Comini E. One dimensional ZnO nanostructures: Growth and chemical sensing performances. Nanomaterials. 2020;10(10):1-16. doi:10.3390/nano10101940

Suganya R, Revathi A, Sudha D, Sivaprakash V, Kumar ER. Evaluation of structural, optical properties and photocatalytic activity of Ag2O coated ZnO nanoparticles. J Mater Sci Mater Electron. 2022;33(29):23224-23235. doi:10.1007/s10854-022-09086-9

Teow YH, Chiah YH, Ho KC, Mahmoudi E. Treatment of semiconductor-industry wastewater with the application of ceramic membrane and polymeric membrane. J Clean Prod. 2022;337(January):130569. doi:10.1016/j.jclepro.2022.130569

Balcha A, Yadav OP, Dey T. Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods. Environ Sci Pollut Res. 2016;23(24):25485-25493. doi:10.1007/s11356-016-7750-6

Basnet P, Chatterjee S. Structure-directing property and growth mechanism induced by capping agents in nanostructured ZnO during hydrothermal synthesis—A systematic review. Nano-Structures and Nano-Objects. 2020;22:100426. doi:10.1016/j.nanoso.2020.100426

Musfita NM, Fajaroh F, Aliyatulmuna A, Ciptawati E, Yahmin Y, Nazriati N. Pemanfaatan Limbah Kulit Pisang Raja Nangka sebagai Capping Agent Sintesis Partikel ZnO: Variasi Pelarut Ekstraksi. Sainmatika J Ilm Mat dan Ilmu Pengetah Alam. 2022;19(2):124-140. doi:10.31851/sainmatika.v19i2.9135

Lyimo G V., Ajayi RF, Maboza E, Adam RZ. A green synthesis of zinc oxide nanoparticles using Musa Paradisiaca and Rooibos extracts. MethodsX. 2022;9:101892. doi:10.1016/j.mex.2022.101892

Betty RIM, Lawa Y. Dari Ramuan Tradisional Desa Loles Saenam TTS Dalam Sopi Pisang Ambon (Musa Acuminata Cavendish). Published online 2022:81-88.

Indra P, Dewi C, Sawiji RT, Dhrik M. Perbandingan Aktivitas Antibakteri Ekstrak Etanol Daun Teh ( Camellia sinensis ) Dalam Varian Teh Hijau , Teh Oolong , Dan Teh Hitam Terhadap Propionibacterium acnes. 2(1).

Agarwal H, Venkat Kumar S, Rajeshkumar S. A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach. Resour Technol. 2017;3(4):406-413. doi:10.1016/j.reffit.2017.03.002

Sadiq H, Sher F, Sehar S, et al. Green synthesis of ZnO nanoparticles from Syzygium Cumini leaves extract with robust photocatalysis applications. J Mol Liq. 2021;335. doi:10.1016/j.molliq.2021.116567

Faisal S, Jan H, Shah SA, et al. Green Synthesis of Zinc Oxide (ZnO) Nanoparticles Using Aqueous Fruit Extracts of Myristica fragrans: Their Characterizations and Biological and Environmental Applications. ACS Omega. 2021;6(14):9709-9722. doi:10.1021/acsomega.1c00310

Zhou P, Dai Z, Lu T, et al. Degradation of Rhodamine B in Wastewater by Iron-Loaded Attapulgite Particle Heterogeneous Fenton Catalyst. Catalysts. 2022;12(6). doi:10.3390/catal12060669

Pinto LF, Montaño AM, González CP, Barón GC. Removal of rhodamine B in wastewater from the textile industry using geopolymeric material. J Phys Conf Ser. 2019;1386(1). doi:10.1088/1742-6596/1386/1/012040

Giasari AS, Maharani Muharam AP, Syampurwadi A, Dedi, Eddy DR, Primadona I. Morphological effect of one-dimensional ZnO nanostructures on the photocatalytic activity. J Phys Chem Solids. 2023;176(December 2022):111259. doi:10.1016/j.jpcs.2023.111259

Mohammadi FM, Ghasemi N. Influence of temperature and concentration on biosynthesis and characterization of zinc oxide nanoparticles using cherry extract. J Nanostructure Chem. 2018;8(1):93-102. doi:10.1007/s40097-018-0257-6

Shaba EY, Jacob JO, Tijani JO, Suleiman MAT. A Critical Review of Synthesis Parameters Affecting the Properties of Zinc Oxide Nanoparticle and Its Application in Wastewater Treatment. Vol 11. Springer International Publishing; 2021. doi:10.1007/s13201-021-01370-z


Full Text: PDF

DOI: 10.15408/jkv.v10i2.41793

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Uji Pratomo, Natasha Fransisca, Zahra Afriani, Ayu jelita Sinambela, Nazwa Alya Zahra, Nelson Indarto Suwarno, Husain Akbar Sumeru, Irwan Kurnia, Indah Primadona, Rudiawan Edwin

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.