Low-Cost Adsorbent Development: Sulfuric Acid-Activated Teak Sawdust for Effective Methylene Blue Removal

Anselmus Boy Baunsele, Hildegardis Missa, Dwi Siswanta, Johnson N. Naat, Yantus A. B. Neolaka, Fidelis Nitti, Abner Tonu Lema, Rahmat Basuki, Rahayu Rahayu

Abstract


The expansion of the global textile industry has resulted in a decline in environmental quality. Environmental pollution resulting from textile dye waste may include heavy metals and dyes, which exhibit carcinogenic and mutagenic effects. Many studies have been done to reduce the harm of dyes. Extensive research has been undertaken to mitigate the detrimental effects of dyes. One cost-effective approach for managing dye pollution is the adsorption of methylene blue using sulfuric acid-activated teak sawdust. Teak wood sawdust, a byproduct of the furniture industry that is abundant and underutilized, contains active sites within its constituent compounds, including cellulose, hemicellulose, and lignin. This study was designed to determine the ability of teak sawdust to adsorb methylene blue. In this investigation, the biosorbent will be characterized using fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and scanning electron microscopy-energy dispersive X-ray (SEM-EDX) to analyze its active sites and surface morphology. Additionally, the study aimed to elucidate the impact of variation contact time, pH solution, and alteration in methylene blue concentration on the adsorption capacity for methylene blue, employing a UV-Vis spectrophotometer for measurement. The research results demonstrated that optimal adsorption occurred at a contact time of 30 minutes and a pH of 6, with the adsorption efficiency reaching 99.67% as a function of contact time. The kinetic study was modeled using a pseudo-second-order approach, with a kinetic constant of 79.71 g mg⁻¹ min⁻¹. The maximum adsorption capacity was 1.351 mg g⁻¹, the n value was 1, and the percentage of methylene blue adsorbed reached 99.88%.


Keywords


Adsorption; acid-activated; methylene blue; teak sawdust

References


Desore A, Narula SA. An overview on corporate response towards sustainability issues in textile industry. Environ Dev Sustain. 2018;20(4):1439-1459. doi:10.1007/s10668-017-9949-1

Zhu H, Chen S, Luo Y. Adsorption mechanisms of hydrogels for heavy metal and organic dyes removal: A short review. Journal of Agriculture and Food Research. 2023;12:100552. doi:10.1016/j.jafr.2023.100552

Azis T, Ahmad LO, Rosa FE, Kadir LA. Study of Equilibrium and Kinetics of Pb(II) in Solution Using Persimmon Tannin Gel as an Adsorbent. J Kim Sains Apl. 2019;22(6):310-316. doi:10.14710/jksa.22.6.310-316

Sounthararajah D, Loganathan P, Kandasamy J, Vigneswaran S. Effects of Humic Acid and Suspended Solids on the Removal of Heavy Metals from Water by Adsorption onto Granular Activated Carbon. IJERPH. 2015;12(9):10475-10489. doi:10.3390/ijerph120910475

Chong MY, Tam YJ. Bioremediation of dyes using coconut parts via adsorption: a review. SN Appl Sci. 2020;2(2):187. doi:10.1007/s42452-020-1978-y

Oladoye PO, Ajiboye TO, Omotola EO, Oyewola OJ. Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results in Engineering. 2022;16:100678. doi:10.1016/j.rineng.2022.100678

Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation. 2019;3(2):275-290. doi:10.1016/j.biori.2019.09.001

Afrin S, Shuvo HR, Sultana B, et al. The degradation of textile industry dyes using the effective bacterial consortium. Heliyon. 2021;7(10):e08102. doi:10.1016/j.heliyon.2021.e08102

Zein R, Satrio Purnomo J, Ramadhani P, Safni, Alif MF, Putri CN. Enhancing sorption capacity of methylene blue dye using solid waste of lemongrass biosorbent by modification method. Arabian Journal of Chemistry. 2023;16(2):104480. doi:10.1016/j.arabjc.2022.104480

Suresh S. Removal of Basic Violet 14 from aqueous solution using sulphuric acid activated materials. SpringerPlus. 2016;5(1):633. doi:10.1186/s40064-016-2294-2

Handayani SN, Irmanto I, Indriyani NN. Determination of The Adsorption Kinetics for Adsorption Methylene Blue Dye with C-4-Hydroxy-3-Methoxyphenylcalix[4]resorcinarene. Molekul. 2023;18(1):107-116. doi:10.20884/1.jm.2023.18.1.6768

Jumaeri J, Nadiyya A, Prasetya AT, Sumarni W. Congo Red Dye Adsorption using Magnesium Hydroxide from Seawater Bittern. J Kim Sains Apl. 2022;25(6):205-211. doi:10.14710/jksa.25.6.205-211

Hardian A, Rosidah R, Budiman S, Syarif DG. Preparation of Composite Derived from Banana Peel Activated Carbon and MgFe2O4 as Magnetic Adsorbent for Methylene Blue Removal. J Kim Sains Apl. 2021;23(12):440-448. doi:10.14710/jksa.23.12.440-448

Staroń P, Chwastowski J, Banach M. Sorption behavior of methylene blue from aqueous solution by raphia fibers. Int J Environ Sci Technol. 2019;16(12):8449-8460. doi:10.1007/s13762-019-02446-9

Długosz O, Szostak K, Krupiński M, Banach M. Synthesis of Fe3O4/ZnO nanoparticles and their application for the photodegradation of anionic and cationic dyes. Int J Environ Sci Technol. 2021;18(3):561-574. doi:10.1007/s13762-020-02852-4

Kumar M S, N S, E D. Photocatalytic Degradation of Methylene Blue Using Silver Nanoparticles Synthesized from Gymnema Sylvestre and Antimicrobial Assay. NRS. 2019;2(2). doi:10.31031/NRS.2019.02.000532

Talaiekhozani A, Reza Mosayebi M, Fulazzaky MA, Eskandari Z, Sanayee R. Combination of TiO2 microreactor and electroflotation for organic pollutant removal from textile dyeing industry wastewater. Alexandria Engineering Journal. 2020;59(2):549-563. doi:10.1016/j.aej.2020.01.052

Riyanto, Mawazi M. Electrochemical Degradation of Methylen Blue Using Carbon Composite Electrode (C-PVC) in Sodium Chloride. IOSR Journal of Applied Chemistry. 2015;8(11):31-40. doi:10.9790/5736-081113140

Azis T, Ahmad LO, Awaliyah K, Kadir LA. Study of Kinetics and Adsorption Isotherm of Methylene Blue Dye using Tannin Gel from Ceriops tagal. J Kim Sains Apl. 2020;23(10):370-376. doi:10.14710/jksa.23.10.370-376

Al Ashik A, Rahman MdA, Halder D, Hossain MdM. Removal of methylene blue from aqueous solution by coconut coir dust as a low-cost adsorbent. Appl Water Sci. 2023;13(3):81. doi:10.1007/s13201-023-01887-5

Rosanti̇ AD, Kusumawati̇ Y, Hi̇Dayat F, Fadlan A, Wardani̇ AR k., Anggraeni̇ HA. Adsorption of Methylene Blue and Methyl Orange from Aqueous Solution using Orange Peel and CTAB-Modified Orange Peel. Journal of the Turkish Chemical Society Section A: Chemistry. 2022;9(1):237-246. doi:10.18596/jotcsa.1003132

Mittal H, Al Alili A, Alhassan SM. High efficiency removal of methylene blue dye using κ-carrageenan-poly(acrylamide-co-methacrylic acid)/AQSOA-Z05 zeolite hydrogel composites. Cellulose. 2020;27(14):8269-8285. doi:10.1007/s10570-020-03365-6

Nipa ST, Shefa NR, Parvin S, et al. Adsorption of methylene blue on papaya bark fiber: Equilibrium, isotherm and kinetic perspectives. Results in Engineering. 2023;17:100857. doi:10.1016/j.rineng.2022.100857

Utomo HD, Phoon RYN, Shen Z, Ng LH, Lim ZB. Removal of Methylene Blue Using Chemically Modified Sugarcane Bagasse. Natural Resources. 2015;6(4):209-220. doi:10.4236/nr.2015.64019

Baunsele AB, Missa H. Kajian Kinetika Adsorpsi Metilen Biru Menggunakan Adsorben Sabut Kelapa. Akta Kimia Indonesia. 2020;5(2):76-85.

Baunsele AB, Missa H. Langmuir and Freundlich Equation Test on Methylene Blue Adsorption by Using Coconut Fiber Biosorbent. Walisongo Journal of Chemistry. 2021;4(2):131-138. doi:10.21580/wjc.v4i2.8941

Baunsele AB, Boelan EG, Kopon AM, Rahayu R, Siswanta D. Kinetic Study of Blue Methylene Adsorption Using Coconut Husk Base Activated. 1. 2022;10(2):110-116. doi:10.30598//ijcr.2022.10-ans

Baunsele AB, Boelan EG, Kopon AM, Taek MM, Tukan GD, Missa H. Penggunaan Sabut Kelapa Teraktivasi NaOH sebagai Adsorben Metilen Biru: KOVALEN: Jurnal Riset Kimia. 2023;9(1):43-54. doi:10.22487/kovalen.2023.v9.i1.16274

Baunsele AB, Kopon AM, Boelan EG, et al. Adsorption of Methylene Blue using the Biosorbent of Coconut Fiber Activated by Nitric Acid. molekul. 2024;19(1):128. doi:10.20884/1.jm.2024.19.1.9443

Ninu YD, Baunsele AB. Studi Adsorpsi Metilen Biru Menggunakan Biosorben Sabut Buah Siwalan Teraktivasi Kalium Hidroksida. SPIN. 2023;5(1):50-66. doi:10.20414/spin.v5i1.6807

Banamtuan TE, Baunsele AB, Kopon AM. Studi Adsorpsi Metilen Biru Memanfaatkan Sabut Buah Lontar. Jurnal Inovasi Teknik Kimia. 2023;8(2):108-116. doi:10.31942/inteka.v8i2.8065

Moniz L, Baunsele AB, Boelan EG, et al. Optimasi Adsorpsi Metilen Biru Memanfaatkan Sabut Buah Lontar Teraktivasi Asam. CAKRA KIMIA (Indonesian E-Journal of Applied Chemistry). 2024;12(1):17-31.

Sylvia N, Dewi R, Zulnazri Z, Setiawan H, Humaira D, Reza M. Optimization of Methylene Blue Dye Adsorption in Fixed Bed Column Packed with Tea Waste via Response Surface Methodology. J Kim Sains Apl. 2023;26(8):310-317. doi:10.14710/jksa.26.8.310-317

Kusuma HS, Aigbe UO, Ukhurebor KE, et al. Biosorption of Methylene blue using clove leaves waste modified with sodium hydroxide. Results in Chemistry. 2023;5:100778. doi:10.1016/j.rechem.2023.100778

Esmaeili H, Foroutan R. Adsorptive Behavior of Methylene Blue onto Sawdust of Sour Lemon, Date Palm, and Eucalyptus as Agricultural Wastes. Journal of Dispersion Science and Technology. 2019;40(7):990-999. doi:10.1080/01932691.2018.1489828

Chen C, Fu Y, Yu L li, Li J, Li D qiang. Removal of methylene blue by seed-watermelon pulp-based low-cost adsorbent: Study of adsorption isotherms and kinetic models. Journal of Dispersion Science and Technology. 2017;38(8):1142-1146. doi:10.1080/01932691.2016.1225263

Fang J, Gao B, Mosa A, Zhan L. Chemical activation of hickory and peanut hull hydrochars for removal of lead and methylene blue from aqueous solutions. Chemical Speciation & Bioavailability. 2017;29(1):197-204. doi:10.1080/09542299.2017.1403294

Baunsele AB, Kopon AM, Boelan EG, et al. Pengaruh pH dan Waktu Kontak Terhadap Adsorpsi Metilen Biru Menggunakan Serbuk Gergaji Kayu Jati. Alotrop. 2024;8(1):1-11. doi:10.33369/alo.v8i1.32235

Kurniasih D, Sari KE, Wijayanti WP. Kajian Peluang Alternatif Pengolahan Limbah Serbuk Gergaji di Sentra Industri Mebel Kelurahan Bukir. Planning for Urban Region and Environment. 2021;10(4):9-18.

El-Nemr MA, Yılmaz M, Ragab S, El Nemr A. Biochar-SO prepared from pea peels by dehydration with sulfuric acid improves the adsorption of Cr6+ from water. Biomass Conv Bioref. 2024;14(2):2601-2619. doi:10.1007/s13399-022-02378-4

Kusuma HS, Aigbe UO, Ukhurebor KE, et al. Biosorption of Methylene blue using clove leaves waste modified with sodium hydroxide. Results in Chemistry. 2023;5:100778. doi:10.1016/j.rechem.2023.100778

Asasian KN, Sharifian S, Kaghazchi T. Investigation of sulfuric acid-treated activated carbon properties. Turk J Chem. 2019;43(2):663-675. doi:10.3906/kim-1810-63

Cundari L, Fanneza AL, Arisma NC. Characterization of Biosorbent from Musa acuminata balbisian Peel using FTIR Spectroscopy and Its Application to Cadmium (Cd) Removal: Effect of Activator Type, pH, and Biosorbent Ratio. CHEMICA: Jurnal Teknik Kimia. 2023;9(3):142. doi:10.26555/chemica.v9i3.23992

Kamila EA, Abidin Z, Arief II, Trivadila. Synthesis, Characterization, Antibacterial Activity, and Potential Water Filter Application of Copper Oxide/Zeolite Composite. mss. 2023;27(3). doi:10.7454/mss.v27i3.1555

Mishra Y. Adsorption Studies of Basic Dyes Onto Teak (Tectona Grandis) Leaf Powder. Journal of Urban and Env ironm ent al Engineering. 2015;9(9):102-108. doi:10.4090/ juee.2015.v9n2.102108

Su P, Wan Q, Yang Y, et al. Hydroxylation of electrolytic manganese anode slime with EDTA-2Na and its adsorption of methylene blue. Separation and Purification Technology. 2021;278:119526. doi:10.1016/j.seppur.2021.119526

Bello OS, Lasisi BM, Adigun OJ, Ephraim V. Scavenging Rhodamine B dye using moringa oleifera seed pod. Chemical Speciation & Bioavailability. 2017;29(1):120-134. doi:10.1080/09542299.2017.1356694

Baunsele AB, Missa H. Kajian Kinetika Adsorpsi Metilen Biru Menggunakan Adsorben Sabut Kelapa. Akta Kimia Indonesia. 2020;5(2):76. doi:10.12962/j25493736.v5i2.7791

Firdaus MYM, Aziz A, Azmier Ahmad M. Conversion of teak wood waste into microwave-irradiated activated carbon for cationic methylene blue dye removal: Optimization and batch studies. Arabian Journal of Chemistry. 2022;15(9):104081. doi:10.1016/j.arabjc.2022.104081

Parushuram N, Ranjana R, Harisha KS, et al. Silk fibroin and silk fibroin-gold nanoparticles nanocomposite films: sustainable adsorbents for methylene blue dye. Journal of Dispersion Science and Technology. 2022;43(8):1161-1176. doi:10.1080/01932691.2020.1848578

Abbou B, Lebki̇Ri̇ İ, Ouaddari H, et al. Kinetic and thermodynamic study on adsorption of cadmium from aqueous solutions using natural clay. Journal of the Turkish Chemical Society Section A: Chemistry. 2021;8(2):677-692. doi:10.18596/jotcsa.882016

Yakout AA, Shaker MA, Elwakeel KZ, Alshitari W. Lauryl sulfate@magnetic graphene oxide nanosorbent for fast methylene blue recovery from aqueous solutions. Journal of Dispersion Science and Technology. 2019;40(5):707-715. doi:10.1080/01932691.2018.1477604

Neolaka YAB, Lawa Y, Naat JN, et al. The adsorption of Cr(VI) from water samples using graphene oxide-magnetic (GO-Fe3O4) synthesized from natural cellulose-based graphite (kusambi wood or Schleichera oleosa): Study of kinetics, isotherms and thermodynamics. Journal of Materials Research and Technology. 2020;9(3):6544-6556. doi:10.1016/j.jmrt.2020.04.040

Ahmad MA, Ahmed NB, Adegoke KA, Bello OS. Sorption studies of methyl red dye removal using lemon grass (Cymbopogon citratus). Chemical Data Collections. 2019;22:100249. doi:10.1016/j.cdc.2019.100249

Ayawei N, Ebelegi AN, Wankasi D. Modelling and Interpretation of Adsorption Isotherms. Journal of Chemistry. 2017;2017. doi:10.1155/2017/3039817

Ragadhita R, Nandiyanto ABD. How to Calculate Adsorption Isotherms of Particles Using Two-Parameter Monolayer Adsorption Models and Equations. Indonesian J Sci Technol. 2021;6(1):205-234. doi:10.17509/ijost.v6i1.32354

Trisanti PN, Rifan M, Akbar P, Gunardi I, Sumarno S. Isolation of cellulose from teak wood using hydrothermal method. In: AIP Publishing; 2021:020047. doi:10.1063/5.0053874

Hina K, Zou H, Qian W, Zuo D, Yi C. Preparation and performance comparison of cellulose-based activated carbon fibres. Cellulose. 2018;25(1):607-617. doi:10.1007/s10570-017-1560-y

Gorgieva S, Vogrinčič R, Kokol V. The Effect of Membrane Structure Prepared from Carboxymethyl Cellulose and Cellulose Nanofibrils for Cationic Dye Removal. J Polym Environ. 2019;27(2):318-332. doi:10.1007/s10924-018-1341-1

Acut E, Anorico NF, Acut D. Optimization of the Removal of Hexavalent Chromium Cr(VI) from Aqueous Solution by Moringa oleifera Bark-Derived Activated Carbon (MOBAC) Using Response Surface Methodology (RSM). Orbital: Electron J Chem. Published online December 29, 2023:186-197. doi:10.17807/orbital.v15i4.19352

Nizam NUM, Hanafiah MM, Mahmoudi E, Halim AA, Mohammad AW. The removal of anionic and cationic dyes from an aqueous solution using biomass-based activated carbon. Sci Rep. 2021;11(1):8623. doi:10.1038/s41598-021-88084-z

Ahmad MA, Ahmed NB, Adegoke KA, Bello OS. Sorption studies of methyl red dye removal using lemon grass (Cymbopogon citratus). Chemical Data Collections. 2019;22:100249. doi:10.1016/j.cdc.2019.100249

Yildirim A, Acay H. Biosorption studies of mushrooms for two typical dyes. Journal of the Turkish Chemical Society Section A: Chemistry. 2020;7(1):295-306. doi:10.18596/jotcsa.581007

Baunsele AB, Missa H. Langmuir and Freundlich Equation Test on Methylene Blue Adsorption by Using Coconut Fiber Biosorbent. Walisongo Journal of Chemistry. 2021;4(2):131-138.

Grząbka-Zasadzińska A, Ratajczak I, Król K, Woźniak M, Borysiak S. The influence of crystalline structure of cellulose in chitosan-based biocomposites on removal of Ca(II), Mg(II), Fe(III) ion in aqueous solutions. Cellulose. 2021;28(9):5745-5759. doi:10.1007/s10570-021-03899-3

Kamari A, Yusoff SNM, Abdullah F, Putra WP. Biosorptive removal of Cu(II), Ni(II) and Pb(II) ions from aqueous solutions using coconut dregs residue: Adsorption and characterisation studies. Journal of Environmental Chemical Engineering. 2014;2(4):1912-1919. doi:10.1016/j.jece.2014.08.014

Pathania D, Sharma S, Singh P. Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian Journal of Chemistry. 2017;10:S1445-S1451. doi:10.1016/j.arabjc.2013.04.021

Bello OS, Adegoke KA, Fagbenro SO, Lameed OS. Functionalized coconut husks for rhodamine-B dye sequestration. Appl Water Sci. 2019;9(8):189. doi:10.1007/s13201-019-1051-4

Moirana RL, Mkunda J, Machunda R, Paradelo M, Mtei K. Hydroxyapatite-activated seaweed biochar for enhanced remediation of fluoride contaminated soil at various pH ranges. Environmental Advances. 2023;11:100329. doi:10.1016/j.envadv.2022.100329

Bello OS, Adegoke KA, Fagbenro SO, Lameed OS. Functionalized coconut husks for rhodamine-B dye sequestration. Appl Water Sci. 2019;9(8):189. doi:10.1007/s13201-019-1051-4

Al-Maliky EA, Gzar HA, Al-Azawy MG. Determination of Point of Zero Charge (PZC) of Concrete Particles Adsorbents. IOP Conf Ser: Mater Sci Eng. 2021;1184(1):012004. doi:10.1088/1757-899X/1184/1/012004

Baunsele AB, Boelan EG, Kopon AM, Rahayu R, Siswanta D. Kinetic Study of Blue Methylene Adsorption Using Coconut Husk Base Activated. Indo J Chem Res. 2022;10(2):110-116. doi:10.30598//ijcr.2022.10-ans

De Oliveira FM, Rodrigues De Sousa PA, De Melo EI, Coelho LM. Evaluation of the Adsorption Process Using Low Cost Agroindustry Residue for the Removal of Methylene Blue Dye. Orbital: Electron J Chem. 2020;12(2):76-86. doi:10.17807/orbital.v12i2.1422

Fairooz AK, Mushtaq MAB, Arif PMA, Mazahar MF. A Comparative Study of Adsorption of Methylene Blue Dye onto Untreated Platanus orientalis (chinar tree) Leaves Powder and its Biochar - Equilibrium, Kinetic and Thermodynamic Study. Orbital: Electron J Chem. Published online October 11, 2023:163-170. doi:10.17807/orbital.v15i3.18358

Gong L, Sun W, Kong L. Adsorption of Methylene Blue by NaOH-modified Dead Leaves of Plane Trees. Computational Water, Energy, and Environmental Engineering. 2013;2(2):13-19. doi:10.4236/cweee.2013.22B003

Hameed BH, Mahmoud DK, Ahmad AL. Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste. Journal of Hazardous Materials. 2008;158(1):65-72. doi:10.1016/j.jhazmat.2008.01.034

El-Bery HM, Saleh M, El-Gendy RA, Saleh MR, Thabet SM. High adsorption capacity of phenol and methylene blue using activated carbon derived from lignocellulosic agriculture wastes. Sci Rep. 2022;12(1):5499. doi:10.1038/s41598-022-09475-4

Campos AFC, Silva FND, Almeida MRBD, Sales LCA, Michels-Brito PH, Oliveira HALD. Thermodynamics of Cr(VI) Adsorption on Magnetic Core-Shell Nanoparticles. Orbital: Electron J Chem. 2019;11(2):64-70. doi:10.17807/orbital.v11i2.1331

Jirekar D, Ubale M, Farooqui M. Evaluation of Adsorption Capacity of Low Cost Adsorbent for the Removal of Congo Red Dye from Aqueous Solution. Orbital: Electron J Chem. 2016;8(5):282-287. doi:10.17807/orbital.v8i5.834


Full Text: PDF

DOI: 10.15408/jkv.v10i2.41425

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Anselmus Boy Baunsele

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.