Modification & Characterization of Activated Carbon Impregnated with KCl, Na2S, and KI for Enhancing Mercury (Hg) Removal from Natural Gas

Bahran Muala, Ni Ketut Sumarni, Dwi Juli Puspitasari

Abstract


Modified activated carbon (MAC) has been synthesized and characterized to enhance mercury (Hg) removal from natural gas. MAC was modified by impregnating it into KCl, Na2S, and KI to introduce Cl-, S-, and I- elements. SEM-EDX, FTIR, and SAA were used to characterize the AC and MAC. The isotherm and adsorption capacity were studied using the mercury gas standard. The results of SEM-EDX analysis show that the impregnation method is proven to produce MAC containing elements Cl, S, and I with mass % of 2.78% Cl, 0.76% S, and 39.60% I. The surface area is 421.91 m2/g, the total pore volume is 0.386825 cc/g, and the average pore size is 1.83369 nm. Group functions are -OH, C=C, C=O, C-O, and vibrations at the wavelength number 617.81 cm-1, which the impregnation agent forms. The mechanism for absorbing mercury gas into MAC follows the Freundlich isotherm model, with a coefficient of determination (R2) of 0.996. The adsorption capacity on MAC increased 57 times compared to unmodified activated carbon (AC) from 5540.60 to 315730.64 ng/g, with an efficiency maximum of 100%. The MAC has been proven to enhance mercury adsorption from natural gas with an efficiency of 78.6%.


Keywords


Modified activated carbon; isotherm; adsorption capacity; natural gas; mercury

References


Singh AD, Khanna K, Kour J, et al. Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies. Chemosphere. 2023;319:137917. doi:10.1016/j.chemosphere.2023.137917

Chalkidis A, Jampaiah D, Hartley PG, Sabri YM, Bhargava SK. Mercury in natural gas streams: A review of materials and processes for abatement and remediation. Journal of Hazardous Materials. 2020;382:121036. doi:10.1016/j.jhazmat.2019.121036

Mashyanov N. Mercury in gas and oil deposits: corrosion problem. E3S Web of Conferences 225, 01009. Published online 2021. doi:10.1051/e3sconf/202122501009

Abdalla AMM, Farouq R, Farag H, Salem M. A Study on the Effect of Operating Parameters on the Efficiency of a Mercury Removal Unit from Natural Gas. Civil and Environmental Engineering Reports. 2019;29:117-155. doi:10.2478/ceer-2019-0020

Li K, Liu G, Wang C, et al. Acidic and basic groups introducing on the surface of activated carbon during the plasma-surface modification for changing of COS catalytic hydrolysis activity. Catalysis Communications. 2020;144:106093. doi:10.1016/j.catcom.2020.106093

Chen C, Duan Y, Huang T, Zhu M, Liu X, Wei H. Regeneration Characteristics of Elemental Sulfur-Modified Activated Carbon for Mercury Removal. ACS Publications - Energy & Fuels. Published online 2021:9497-9508. doi:10.1021/acs.energyfuels.1c00559

Korpiel JA, Vidic RD. Effect of Sulfur Impregnation Method on Activated Carbon Uptake of Gas-Phase Mercury. Environ Sci Technol. 1997;31(8):2319-2325. doi:10.1021/es9609260

Rosmayati L. The improvement of mercury removal in natural gas by activated carbon impregnated with zinc chloride. Scientific Contributions Oil & Gas. 2012;Vol. 35, NO. 1,:25-29. doi:10.29017/SCOG.35.1.774

Duan XL, Yuan CG, Jing TT, Yuan XD. Removal of elemental mercury using large surface area micro-porous corn cob activated carbon by zinc chloride activation. Fuel. 2019;239:830-840. doi:10.1016/j.fuel.2018.11.017

Sano A, Takaoka M, Shiota K. Vapor-phase elemental mercury adsorption by activated carbon co-impregnated with sulfur and chlorine. Chemical Engineering Journal. 2017;315:598-607. doi:10.1016/j.cej.2017.01.035

De M, Azargohar R, Dalai AK, Shewchuk SR. Mercury removal by bio-char based modified activated carbons. Fuel. 2013;103:570-578. doi:10.1016/j.fuel.2012.08.011

Tamjidi S, Moghadas BK, Esmaeili H, Shakerian Khoo F, Gholami G, Ghasemi M. Improving the surface properties of adsorbents by surfactants and their role in the removal of toxic metals from wastewater: A review study. Process Safety and Environmental Protection. 2021;148:775-795. doi:10.1016/j.psep.2021.02.003

Abdelouahab-Reddam Z, Wahby A, Mail RE, Silvestre-Albero J, Rodríguez-Reinoso F, Sepúlveda-Escribano A. Activated Carbons Impregnated with Na2S and H2SO4: Texture, Surface Chemistry and Application to Mercury Removal from Aqueous Solutions. Adsorption Science & Technology. 2014;32(2-3):101-115. doi:10.1260/0263-6174.32.2-3.101

Ayub A, Raza ZA, Majeed MI, Tariq MR, Irfan A. Development of sustainable magnetic chitosan biosorbent beads for kinetic remediation of arsenic contaminated water. International Journal of Biological Macromolecules. 2020;163:603-617. doi:10.1016/j.ijbiomac.2020.06.287

Tursi A, Gallizzi V, Olivito F, et al. Selective and efficient mercury(II) removal from water by adsorption with a cellulose citrate biopolymer. Journal of Hazardous Materials Letters. 2022;3:100060. doi:10.1016/j.hazl.2022.100060

Wang J, Guo X. Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere. 2020;258:127279. doi:10.1016/j.chemosphere.2020.127279

Al-Mokhalelati K, Al-Bakri I, Al Shibeh Al Wattar N. Adsorption of methylene blue onto sugarcane bagasse-based adsorbent materials. Journal of Physical Organic Chemistry. 2021;34(7):e4193. doi:10.1002/poc.4193

Bakti AI, Gareso PL, Rauf N. Characterization of Active Carbon from Coconut Shell using X-Ray Diffraction (X-RD) and SEM-EDX Techniques. Jurnal Penelitian Fisika dan Aplikasinya (JPFA). 2018;8(2):115-122. doi:10.26740/jpfa.v8n2.p115-122

Zhao S, Li ZH, Liu ZP, Wang W, Fan KN. Density functional study of the interaction of halogen atom (F, Br, I) with silver clusters. Acta Chimica Sinica. 2007;65:1294-1298.

Zhu J, Deng B, Gang D. Modifying activated carbon with hybrid ligands for enhancing aqueous mercury removal. Carbon. 2009;Volume 47(Issue 8):2014-2025. doi:10.1016/j.carbon.2009.03.047

Munnik P, Jongh P, De Jong K. ChemInform Abstract: Recent Developments in the Synthesis of Supported Catalysts. Chemical reviews. 2015;115. doi:10.1021/cr500486u

Yang L, Chou X wei, Li C, Long X li, Yuan W kang. Reduction of [Fe(III)EDTA]− catalyzed by activated carbon modified with KOH solution. Journal of Industrial and Engineering Chemistry. 2013;19:784-790. doi:10.1016/j.jiec.2012.10.017

Wu L, Li Y, Fu Z, Su BL. Hierarchically structured porous materials: synthesis strategies and applications in energy storage. Natl Sci Rev. 2020;7(11):1667-1701. doi:10.1093/nsr/nwaa183

Kruk M, Jaroniec M. Gas Adsorption Characterization of Ordered Organic−Inorganic Nanocomposite Materials. Chem Mater. 2001;13(10):3169-3183. doi:10.1021/cm0101069

Isah M, Afagwu C, Adjei S, Kadafur I, Jamal S, Awotunde A. A review on polymer, gas, surfactant and nanoparticle adsorption modeling in porous media. Oil & Gas Science and Technology - Revue de l IFP. 2020;75:21. doi:10.2516/ogst/2020063

Liang D, Ji B yu, Wang Y, Li X, Gao WY. Effect of activated carbon microstructure and adsorption mechanism on the efficient removal of chlorophyll a and chlorophyll b from Andrographis paniculata extract. Sci Rep. 2023;13(1):21930. doi:10.1038/s41598-023-42011-6

Biniak S, Szymański G, Siedlewski J, Świątkowski A. The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon. 1997;35(12):1799-1810. doi:10.1016/S0008-6223(97)00096-1

Mopoung S, Moonsri P, Palas W, Khumpai S. Characterization and Properties of Activated Carbon Prepared from Tamarind Seeds by KOH Activation for Fe(III) Adsorption from Aqueous Solution. The Scientific World Journal. 2015;2015(1):415961. doi:10.1155/2015/415961

Figueiredo JL, Pereira MFR, Freitas MMA, Órfão JJM. Modification of the surface chemistry of activated carbons. Carbon. 1999;37(9):1379-1389. doi:10.1016/S0008-6223(98)00333-9

Boehm HP. Surface oxides on carbon and their analysis: a critical assessment. Carbon. 2002;40(2):145-149. doi:10.1016/S0008-6223(01)00165-8

Cai J, Shen B, Li Z, Chen J, He C. Removal of elemental mercury by clays impregnated with KI and KBr. Chemical Engineering Journal. 2014;241:19-27. doi:10.1016/j.cej.2013.11.072

Daiem MA, Alotaibi AA, Alosime EM, Zaidi B, Said N. Structural-Property Relationship in Activated Carbon Synthesized from Rice Straw for Electronic Application. Polish Journal of Environmental Studies. Published online 2020. doi:10.15244/pjoes/117761

Jaber L, Backer SN, Laoui T, et al. Recent trends in surface impregnation techniques on activated carbon for efficient pollutant removal from wastewater. Desalination and Water Treatment. 2024;319:100562. doi:10.1016/j.dwt.2024.100562

Jang HN, Back S, Sung JH, et al. Adsorption and kinetics of elemental mercury vapor on activated carbons impregnated with potassium iodide, hydrogen chloride, and sulfur. Korean Journal of Chemical Engineering. 2017;34. doi:10.1007/s11814-016-0305-1

Nimibofa A, Ekubo A, Donbebe W, Dikio E. Adsorption of Congo Red by Ni/Al-CO3: Equilibrium, Thermodynamic and Kinetic Studies. Oriental Journal of Chemistry. 2015;31:1307-1318. doi:10.13005/ojc/310307

Sahoo S, Sharma U, Banerjee S, Sharma YC. Application of natural clay as a potential adsorbent for the removal of a toxic dye from aqueous solutions. Desalination and Water Treatment. 2014;52. doi:10.1080/19443994.2013.816872

Rashidi NA, Yusup S, Borhan A. Isotherm and Thermodynamic Analysis of Carbon Dioxide on Activated Carbon. Elsevier Ltd. 2016;Procedia Engineering 148:630-637. doi:10.1016/j.proeng.2016.06.527

Aljamali N, Khdur R, Alfatlawi I. Physical and Chemical Adsorption and its Applications. International Journal of Thermodynamics and Chemical Kinetics. 2021;7:1-8. doi:10.37628/IJTCK

Dada AO, Ojediran J, Olalekan A. Sorption of from Aqueous Solution unto Modified Rice Husk: Isotherms Studies. Advances in Physical Chemistry. 2013;2013. doi:10.1155/2013/842425

Lee SJ, Seo YC, Jurng J, Lee TG. Removal of gas-phase elemental mercury by iodine- and chlorine-impregnated activated carbons. Atmospheric Environment. 2004;38(29):4887-4893. doi:10.1016/j.atmosenv.2004.05.043

Mulugeta E. Physicochemical Analysis and Determination of the Levels of Some Heavy Metals in Honey Samples Collected from Three District Area of East Gojjam Zone of Amhara Region, Ethiopia. Journl of Agricultural Science and Food Research. Published online November 19, 2020. doi:10.35248/2593-9173.20.11.279


Full Text: PDF

DOI: 10.15408/jkv.v10i2.40876

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Bahran Muala, Ni Ketut Sumarni, Dwi Juli Puspitasari

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.