Synthesis and Characterization of Magnetic Molecularly Imprinted Polymers Targeting Capsaicin

Ahmad Mukhlasul Amri, Muhammad Yudhistira Azis, Muhammad Ali Zulfikar

Abstract


A novel magnetic molecularly imprinted polymers (MMIPs) was developed for the adsorption of capsaicin, a key component of capsaicinoids widely used in food additives and topical pharmaceuticals. Excessive use of capsaicin can lead to respiratory, skin, and oral disorders, necessitating effective monitoring methods. This study aimed to synthesize MMIPs and magnetic molecularly non imprinted polymers (MNIPs) using 4-vinyl pyridine as the functional monomer and ethylene glycol dimethacrylate (EGDMA) as the crosslinker, combined with an initiator in a 1:4:20 molar ratio. Magnetite nanoparticles (Fe3O4) were incorporated to facilitate magnetic separation. Characterization via particle size analyzer (PSA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) confirmed the successful synthesis of Fe3O4 nanoparticles, MNIPs, and MMIPs. PSA analysis for Fe3O4 nanoparticles showed an average size of 140.2 nm with a polydispersity index (PI) of 0.313, MMIPs showed an average particle size of 746.6 nm and a PI value of 0.397. FTIR spectra revealed characteristic absorption bands at 3429 cm−1 (O-H), 2958 cm−1 (C-H), 1732 cm−1 (C=O), 1155 cm−1 (C-O), and 580 cm−1(Fe-O), indicating successful Fe3O4 modification. SEM-EDS analysis showed non-spherical morphology due to bulk polymerization. TEM image results showed Fe₃O₄ nanoparticles were successfully coated with a molecularly imprinted polymer (MIP). The developed MMIPs effectively have a robust synthesis method and thorough analysis, laying the groundwork for future applications.

Keywords


4-vinyl pyridine; EGDMA; capsaicin; MMIPs; adsorption

References


Fan Y, Lu Y min, Yu B, Tan C ping, Cui B. Extraction and purification of capsaicin from capsicum oleoresin using an aqueous two-phase system combined with chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2017;1063:11-17. doi:10.1016/j.jchromb.2017.07.006

Wang H, Yuan L, Zhu H, Jin R, Xing J. Comparative study of capsaicin molecularly imprinted polymers prepared by different polymerization methods. Journal of Polymer Science, Part A: Polymer Chemistry. 2019;57(2):157-164. doi:10.1002/pola.29281

Ma X, Ji W, Chen L, Wang X, Liu J, Wang X. Molecularly imprinted polymers with synthetic dummy templates for the preparation of capsaicin and dihydrocapsaicin from chili peppers. Journal of Separation Science. 2015;38(1):100-107. doi:10.1002/jssc.201400911

Emori W, Louis H, Okonkwo PC, et al. Dispersive adsorption and anticorrosion properties of natural capsaicin on Q235 steel in mixed H2SO4 and NaCl environment: Characterization, experimental and theoretical studies. Sustainable Chemistry and Pharmacy. 2023;32. doi:10.1016/j.scp.2023.101042

Yardim Y, Şentürk Z. Electrochemical evaluation and adsorptive stripping voltammetric determination of capsaicin or dihydrocapsaicin on a disposable pencil graphite electrode. Talanta. 2013;112:11-19. doi:10.1016/j.talanta.2013.03.047

Xiang Q, Tang X, Cui S, et al. Capsaicin, the Spicy Ingredient of Chili Peppers: Effects on Gastrointestinal Tract and Composition of Gut Microbiota at Various Dosages. Foods. 2022;11(5). doi:10.3390/foods11050686

Tahir I, Wijaya K, Islam S, Ahmad MN. Computer aided design of molecular imprinted polymer for selective recognition of capsain. Indo. J. Chem. 2014; 14(1); 85-93. https://doi.org/10.22146/ijc.21272.

Lewis RJSr. Sax’s Dangerous Properties of Industrial Materials. 10th ed. Wiley-Interscience, J. Wiley & Sons; 2004.

Lyu W, Zhang X, Zhang Z, et al. A simple and sensitive electrochemical method for the determination of capsaicinoids in chilli peppers. Sens Actuators B Chem. 2019;288:65-70. doi:10.1016/j.snb.2019.02.104

Lu Y, Cui B. Extraction and purification of capsaicin from capsicum oleoresin using a combination of tunable aqueous polymer-phase impregnated resin (TAPPIR) extraction and chromatography technology. Molecules. 2019;24(21). doi:10.3390/molecules24213956

Trendafilova I, Chimshirova R, Momekova D, et al. Curcumin and Capsaicin-Loaded Ag-Modified Mesoporous Silica Carriers: A New Alternative in Skin Treatment. Nanomaterials. 2022;12(17). doi:10.3390/nano12173075

Nazim T, Lusina A, Cegłowski M. Recent Developments in the Detection of Organic Contaminants Using Molecularly Imprinted Polymers Combined with Various Analytical Techniques. Polymers (Basel). 2023;15(19). doi:10.3390/polym15193868

Basak S, Venkatram R, Singhal RS. Recent advances in the application of molecularly imprinted polymers (MIPs) in food analysis. Food Control. 2022;139. doi:10.1016/j.foodcont.2022.109074

Rizqi Utami A, Ali Zulfikar M, Wahyuningrum D. The synthesis of magnetic molecularly imprinted polymer against di-(2-ethylhexyl)phthalate. IOP Conf Ser Mater Sci Eng. 2021;1143(1):012003. doi:10.1088/1757-899x/1143/1/012003

Uzuriaga-Sánchez RJ, Wong A, Khan S, Pividori MI, Picasso G, Sotomayor MDPT. Synthesis of a new magnetic-MIP for the selective detection of 1-chloro-2,4-dinitrobenzene, a highly allergenic compound. Materials Science and Engineering C. 2017;74:365-373. doi:10.1016/j.msec.2016.12.019

Nguyen MD, Tran HV, Xu S, Lee TR. Fe3O4 nanoparticles: Structures, synthesis, magnetic properties, surface functionalization, and emerging applications. Applied Sciences (Switzerland). 2021;11(23). doi:10.3390/app112311301

Dong C, Shi H, Han Y, Yang Y, Wang R, Men J. Molecularly imprinted polymers by the surface imprinting technique. European Polymer Journal. 2021;145. doi:10.1016/j.eurpolymj.2020.110231

Villa CC, Sánchez LT, Valencia GA, Ahmed S, Gutiérrez TJ. Molecularly imprinted polymers for food applications: A review. Trends in Food Science and Technology. 2021;111:642-669. doi:10.1016/j.tifs.2021.03.003

Acharya A, Bhatta NR. Validation of UV spectrophotometric method for the analysis of capsaicin in ethanol. and Analytical Research. 2022;11(2):2022-2115. doi:10.61096/ijpar.v11.iss2.2022.115-120

Castro-Muñoz R, Gontarek-Castro E, Jafari SM. Up-to-date strategies and future trends towards the extraction and purification of Capsaicin: A comprehensive review. Trends Food Sci Technol. 2022;123:161-171. doi:10.1016/j.tifs.2022.03.014

Karrat A, Amine A. Innovative approaches to suppress non-specific adsorption in molecularly imprinted polymers for sensing applications. Biosens Bioelectron. 2024;250. doi:10.1016/j.bios.2024.116053

Villarreal-Lucio DS, Vargas-Berrones KX, Díaz de León-Martínez L, Flores-Ramíez R. Molecularly imprinted polymers for environmental adsorption applications. Environmental Science and Pollution Research. 2022;29(60):89923-89942. doi:10.1007/s11356-022-24025-1

Murdaya N, Triadenda AL, Rahayu D, Hasanah AN. A Review: Using Multiple Templates for Molecular Imprinted Polymer: Is It Good? Polymers (Basel). 2022;14(20). doi:10.3390/polym14204441

Shrivastava A. Polymerization. In: Introduction to Plastics Engineering. Elsevier; 2018:17-48. doi:10.1016/B978-0-323-39500-7.00002-2

Sohrabi N, Mohammadi R, Ghassemzadeh HR, Heris SSS. Design and synthesis of a new magnetic molecularly imprinted polymer nanocomposite for specific adsorption and separation of diazinon insecticides from aqueous media. Microchemical Journal. 2022;175. doi:10.1016/j.microc.2021.107087

Gheybalizadeh H, Hejazi P. Influence of hydrophilic and hydrophobic functional monomers on the performance of magnetic molecularly imprinted polymers for selective recognition of human insulin. React Funct Polym. 2022;171. doi:10.1016/j.reactfunctpolym.2021.105152

Ming W, Wang X, Lu W, et al. Magnetic molecularly imprinted polymers for the fluorescent detection of trace 17β-estradiol in environmental water. Sens Actuators B Chem. 2017;238:1309-1315. doi:10.1016/j.snb.2016.09.111

Ndunda EN. Molecularly imprinted polymers—A closer look at the control polymer used in determining the imprinting effect: A mini review. Journal of Molecular Recognition. 2020;33(11). doi:10.1002/jmr.2855

Temcheon P, Chienthavorn O, Siriwatcharapiboon W, Hasin P. In situ formation of nitrogen doped mesoporous carbon via directly carbonizing polyaniline as an efficient electrocatalyst for determination of capsaicin. Microporous and Mesoporous Materials. 2019;278:327-339. doi:10.1016/j.micromeso.2019.01.001


Full Text: PDF

DOI: 10.15408/jkv.v10i2.40808

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Ahmad Mukhlasul Amri

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.