Green Synthesis, Characterization, and Applications of Aluminum Oxide Nanoparticles Using Aqueous Extract of Clove

Waleed Khalid Mahdi, Aqeel Oudah Flayyih, Falih Hassan Musa

Abstract


In this work, γ-Al2O3NPs were successfully biosynthesized, mediated aluminum nitrate nona hydrate Al(NO3)3.9H2O, sodium hydroxide, and aqueous clove extract in alkali media. The γ-Al2O3NPs were characterized by different techniques like Fourier transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy–dispersive x-ray spectroscopy, transmission electron microscope (TEM), Energy-dispersive X-ray spectroscopy (EDX), and atomic force microscopy (AFM). The final results indicated the γ-Al2O3NPs nanoparticle size, bonds nature, element phase, crystallinity, morphology, surface image, particle analysis – threshold detection, and the topography parameter. The identified of γ-Al2O3 bands were detected by the FT-IR spectroscopy. The UV-visible spectrum of γ -Al2O3NPs exhibited an absorption band and (energy gap, Eg = 4.91 eV). It was found that the size range of nanoparticles was (28-37) nm and cubic with agglomerated particles. Antimicrobial activity study showed an excellent inhibition activity of γ-Al2O3NPs against Escherichia coli negative (G-), staphylococcus aureus, positive (G+), and Candida albicans fungal. The effectiveness of the adsorption experiment was proven on binary metal ions, such as cobalt, nickel, and copper, by removing them from water using a nanostructured active surface of γ-Al2O3NPs. The efficiencies removal of Co+2, Ni+2, and Cu+2 ions were   93.22%, 87.49%, and 93.17% respectively.


Keywords


Adsorption; antimicrobial; clove; γ -Al2O3 NPs; green synthesis

References


Tran GT, Nguyen NTH, Nguyen NTT, Nguyen TTT, Nguyen DTC, Tran T Van. Plant extract-mediated synthesis of aluminum oxide nanoparticles for water treatment and biomedical applications: a review. Environ Chem Lett. 2023;21(4):2417-2439.

Ahmad NM, Mohamed AH, Zainal-Abidin N, Nawahwi MZ, Azzeme AM. Effect of optimisation variable and the role of plant extract in the synthesis of nanoparticles using plant-mediated synthesis approaches. Inorg Chem Commun. 2024;161:111839. doi:DOI: 10.1016/j.inoche.2023.111839

Otunola GA. Culinary spices in food and medicine: an overview of Syzygium aromaticum (L.) Merr. and LM Perry [Myrtaceae]. Front Pharmacol. 2022;12:793200. doi:DOI: 10.3389/fphar.2021.793200

Ariswan, Fauzi F, Sumarna, et al. Preliminary results on stability test of clove oil nanoemulsion prepared by ultrasonication process without surfactants. In: AIP Conference Proceedings. Vol 2556. AIP Publishing; 2023. doi:10.1063/5.0111227

Pandey VK, Srivastava S, Dash KK, et al. Bioactive properties of clove (Syzygium aromaticum) essential oil nanoemulsion: A comprehensive review. Heliyon. Published online 2024. doi:https://doi.org/10.1016/j.matchemphys.2007.02.046

Cava S, Tebcherani SM, Souza IA, et al. Structural characterization of phase transition of Al2O3 nanopowders obtained by polymeric precursor method. Mater Chem Phys. 2007;103(2-3):394-399. doi:https://doi.org/10.1016/j.matchemphys.2007.02.046

Baqur MS, Hamied RS, Sukkar KA. An eco-friendly process to produce high-purity nano-γ-Al2O3 from aluminum scrap using a novel electrolysis technique for petroleum industry applications. Arab J Sci Eng. 2023;48(12):15915-15925. doi:https://doi.org/10.1007/s13369-023-07877-8

Wang F, Sun K, Yi E, Laine RM. Chemical modification in and on single phase [NiO] 0.5 [Al2O3] 0.5 nanopowders produces “chocolate chip‐like” Nix@[NiO] 0.5‐x [Al2O3] 0.5 nanocomposite nanopowders. J Am Ceram Soc. 2019;102(12):7145-7153. doi:https://doi.org/10.1111/jace.16632

Alamouti AF, Nadafan M, Dehghani Z, Ara MHM, Noghreiyan AV. Structural and optical coefficients investigation of γ-Al2O3 nanoparticles using Kramers-Kronig relations and Z–scan technique. J Asian Ceram Soc. 2021;9(1):366-373. doi:DOI: 10.1080/21870764.2020.1869881

Hussain DH, Rheima AM, Jaber SH. Cadmium ions pollution treatments in aqueous solution using electrochemically synthesized gamma aluminum oxide nanoparticles with DFT study. Egypt J Chem. 2020;63(2):417-424. doi:DOI: 10.21608/ejchem.2019.16882.2026

Gharbi AH, Laouini SE, Hemmami H, et al. Eco-Friendly Synthesis of Al2O3 Nanoparticles: Comprehensive Characterization Properties, Mechanics, and Photocatalytic Dye Adsorption Study. Coatings. 2024;14(7):848. doi:DOI: https://doi.org/10.3390/coatings14070848

Peralta-Videa JR, Huang Y, Parsons JG, et al. Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis? Nanotechnol Environ Eng. 2016;1:1-29.

Rangasamy P, Hansiya VS, Maheswari PU, Suman T, Geetha N. Phytochemical analysis and evaluation of in vitro antioxidant and anti-urolithiatic potential of various fractions of Clitoria ternatea L. Blue flowered leaves. Asian J Pharm Anal. 2019;9(2):67-76. doi:DOI: 10.5958/2231-5675.2019.00014.0

Manikandan V, Jayanthi P, Priyadharsan A, Vijayaprathap E, Anbarasan PM, Velmurugan P. Green synthesis of pH-responsive Al2O3 nanoparticles: Application to rapid removal of nitrate ions with enhanced antibacterial activity. J Photochem Photobiol A Chem. 2019;371:205-215. doi:DOI: https://doi.org/10.1016/j.jphotochem.2018.11.009

Tang B, Ge J, Zhuo L, et al. A Facile and Controllable Synthesis of γ‐Al2O3 Nanostructures without a Surfactant. Published online 2005. doi:https://doi.org/10.1111/j.1551-2916.2009.03005.x

Siengchin S, Karger‐Kocsis J, Thomann R. Alumina‐filled polystyrene micro‐and nanocomposites prepared by melt mixing with and without latex precompounding: Structure and properties. J Appl Polym Sci. 2007;105(5):2963-2972.

Nagarajan P, Subramaniyan V, Elavarasan V, Mohandoss N, Subramaniyan P, Vijayakumar S. Biofabricated aluminium oxide nanoparticles derived from Citrus aurantium L.: antimicrobial, anti-proliferation, and photocatalytic efficiencies. Sustainability. 2023;15(2):1743. doi:https://doi.org/10.3390/su15021743

Koopi H, Buazar F. A novel one-pot biosynthesis of pure alpha aluminum oxide nanoparticles using the macroalgae Sargassum ilicifolium: a green marine approach. Ceram Int. 2018;44(8):8940-8945. doi:https://doi.org/10.1016/j.ceramint.2018.02.091

Saleh AK, Shaban AS, Diab MA, Debarnot D, Elzaref AS. Green synthesis and characterization of aluminum oxide nanoparticles using Phoenix dactylifera seed extract along with antimicrobial activity, phytotoxicity, and cytological effects on Vicia faba seeds. Biomass Convers Biorefinery. Published online 2023:1-17. doi:https://doi.org/10.1007/s13399-023-04800-x

Filatova EO, Konashuk AS. Interpretation of the changing the band gap of Al2O3 depending on its crystalline form: connection with different local symmetries. J Phys Chem C. 2015;119(35):20755-20761. doi:DOI: 10.1021/acs.jpcc.5b06843

Hossein-Zadeh M, Razavi M, Mirzaee O, Ghaderi R. Characterization of properties of Al–Al2O3 nano-composite synthesized via milling and subsequent casting. J King Saud Univ Sci. 2013;25(1):75-80. doi:DOI: https://doi.org/10.1016/j.jksues.2012.03.001

Buwono HP, Adiwidodo S, Wicaksono H, Firmansyah HI. Hydrothermal synthesis and characterization of nano-particles γ-Al2O3. In: IOP Conference Series: Materials Science and Engineering. Vol 1073. IOP Publishing; 2021:12011.

El-Sawaf AK, El-Dakkony SR, Zayed MA, et al. Green synthesis and characterization of magnetic gamma alumina nanoparticlesfor copper ions adsorption from synthetic wastewater. Results Eng. 2024;22:101971. doi:DOI: https://doi.org/10.1016/j.rineng.2024.101971

Atrak K, Ramazani A, Taghavi Fardood S. Green synthesis of amorphous and gamma aluminum oxide nanoparticles by tragacanth gel and comparison of their photocatalytic activity for the degradation of organic dyes. J Mater Sci Mater Electron. 2018;29:8347-8353. doi:DOI: https://doi.org/10.1007/s10854-018-8845-2

Mohamad SNS, Mahmed N, Halin DSC, Razak KA, Norizan MN, Mohamad IS. Synthesis of alumina nanoparticles by sol-gel method and their applications in the removal of copper ions (Cu2+) from the solution. In: IOP Conference Series: Materials Science and Engineering. Vol 701. IOP Publishing; 2019:12034. doi:doi:10.1088/1757-899X/701/1/012034

Cascione M, De Matteis V, Persano F, Leporatti S. AFM Characterization of Halloysite clay nanocomposites’ superficial properties: current state-of-the-art and perspectives. Materials (Basel). 2022;15(10):3441. doi:DOI: 10.3390/ma15103441

Hill D, Barron AR, Alexander S. Controlling the wettability of plastic by thermally embedding coated aluminium oxide nanoparticles into the surface. J Colloid Interface Sci. 2020;567:45-53. doi:DOI: https://doi.org/10.1016/j.jcis.2020.01.116

Ranjbar M, Dehghan Noudeh G, Hashemipour MA, Mohamadzadeh I. A systematic study and effect of PLA/Al2O3 nanoscaffolds as dental resins: Mechanochemical properties. Artif Cells, Nanomedicine, Biotechnol. 2019;47(1):201-209. doi:DOI: 10.1080/21691401.2018.1548472

Manogar P, Morvinyabesh JE, Ramesh P, et al. Biosynthesis and antimicrobial activity of aluminium oxide nanoparticles using Lyngbya majuscula extract. Mater Lett. 2022;311:131569. doi:https://doi.org/10.1016/j.matlet.2021.131569

Geoprincy G, Gandhi NN, Renganathan S. Novel antibacterial effects of alumina nanoparticles on Bacillus cereus and Bacillus subtilis in comparison with antibiotics. Int J Pharm Pharm Sci. 2012;4:544-548.

Ansari MA, Khan HM, Khan AA, Cameotra SS, Alzohairy MA. Anti-biofilm efficacy of silver nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital. Indian J Med Microbiol. 2015;33(1):101-109. doi:10.4103/0255-0857.148402

Ajibade FO, Adelodun B, Lasisi KH, et al. Environmental pollution and their socioeconomic impacts. In: Microbe Mediated Remediation of Environmental Contaminants. Elsevier; 2021:321-354. doi:DOI: 10.1016/B978-0-12-821199-1.00025-0

Flayyih AO, Mahdi WK, Zaid YI, Musa FH. Biosynthesis, characterization, and applications of Bismuth oxide nanoparticles using aqueous extract of beta vulgaris. Chem Methodol. 2021;6(8):620-628. doi:DOI:10.22034/CHEMM.2022.342124.1522

Prochaska C, Gallios G. Nano-adsorbents for cobalt removal from wastewater: a bibliometric analysis of research articles indexed in the Scopus database. Processes. 2021;9(7):1177. doi:https://doi.org/10.3390/pr9071177

Ali OS, AL-Mammar DE. Adsorption of the Color Pollutant onto NiO Nanoparticles Prepared by a New Green Method. Iraqi J Sci. Published online 2024:1824-1838. doi:DOI: https://doi.org/10.24996/ijs.2024.65.4.4

Tabesh S, Davar F, Loghman-Estarki MR. Preparation of γ-Al2O3 nanoparticles using modified sol-gel method and its use for the adsorption of lead and cadmium ions. J Alloys Compd. 2018;730:441-449. doi:https://doi.org/10.1016/j.jallcom.2017.09.246

Wuana RA, Okieimen FE. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int Sch Res Not. 2011;2011(1):402647. doi:https://doi.org/10.5402/2011/402647


Full Text: PDF

DOI: 10.15408/jkv.v10i2.40403

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Aqeel Oudah Flayyih, Falih Hassan Musa

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.