Development of a Low-Cost Reflectance Visible Spectrophotometer with Chemometrics for Curcuma xanthorrhiza Roxb. Quality Control
Abstract
A simple, portable visible reflectance spectrophotometer was developed for classifying the quality of Curcuma xanthorrhiza Roxb. The device was assembled using consumer electronic components: an LED as the light source, a DVD optical layer as the diffraction grating, and a webcam as the detector, with web-based software (Spectral Workbench) as the signal processor. The spectrophotometer's performance was evaluated using standard Sudan III samples and powdered C. xanthorrhiza samples from two quality classes (A and B). Spectral data were analysed using principal component analysis (PCA) and partial least squares (PLS) regression. PCA successfully grouped Sudan III samples by concentration and classified C. xanthorrhiza by curcuminoid content. A PLS regression model was developed for quantifying Sudan III, yielding R² values of 0.9909 for both calibration and cross-validation, with RMSEs of 0.3821% and 0.4152%, respectively. The results closely matched those from a commercial spectrophotometer. A PLS-discriminant analysis (PLS-DA) classification model for C. xanthorrhiza was also developed, achieving sensitivity and specificity values of 1. Additionally, semi-quantitative parameters such as decision limit (26.15% B), detection capability (41.06% B), and unreliability range (26.15–41.06% B) were calculated. The classification model showed strong sensitivity, specificity, and detection capabilities within acceptable limits. These findings suggest that this low-cost reflectance spectrophotometer, combined with chemometric methods, holds promise as a practical tool for the quality control of raw herbal materials.
Keywords
References
Badan Pengawas Obat dan Makanan. Informatorium Obat Modern Asli Indonesia (OMAI) Di Masa Pandemi Covid-19 | Badan Pengawas Obat Dan Makanan.; 2020. https://perpustakaan.pom.go.id/detail_buku_online/28676. Accessed July 15, 2024.
Torri MC. Innovative farmer institutions and market imperfections: New opportunities and challenges for the ayurvedic sector and small-scale enterprises in India. J Entrep. 2012;21(1):59-90. doi:10.1177/097135571102100103
Klein-Junior LC, De Souza MR, Viaene J, et al. Quality Control of Herbal Medicines: From Traditional Techniques to State-of-the-art Approaches. Planta Med. 2021;87(12-13):964-988. doi:10.1055/a-1529-8339
Ahmad Dar A, Sangwan PL, Kumar A. Chromatography: An important tool for drug discovery. J Sep Sci. 2020;43(1):105-119. doi:10.1002/jssc.201900656
Mao J, Xu J. Discrimination of herbal medicines by molecular spectroscopy and chemical pattern recognition. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2006;65(2):497-500. doi:10.1016/j.saa.2005.11.030
Singh SK, Jha SK, Chaudhary A, Yadava RDS, Rai SB. Quality control of herbal medicines by using spectroscopic techniques and multivariate statistical analysis. Pharm Biol. 2010;48(2):134-141. doi:10.3109/13880200903059388
Stuth J, Jama A, Tolleson D. Direct and indirect means of predicting forage quality through near infrared reflectance spectroscopy. F Crop Res. 2003;84(1-2):45-56. doi:10.1016/S0378-4290(03)00140-0
Li M, Zhou X, Zhao Y, Wang DP, Hu XN. Quality assessment of Curcuma longa L. by gas chromatography-mass spectrometry fingerprint, Principle Components Analysis and Hierarchical Clustering Analysis. Bull Korean Chem Soc. 2009;30(10):2287-2293. doi:10.5012/bkcs.2009.30.10.2287
Lucio-Gutiérrez JR, Coello J, Maspoch S. Application of near infrared spectral fingerprinting and pattern recognition techniques for fast identification of Eleutherococcus senticosus. Food Res Int. 2011;44(2):557-565. doi:10.1016/j.foodres.2010.11.037
Rafi M, Nurcahyo B, Wahyuni WT, et al. Feasibility of UV-Vis Spectral Fingerprinting Combined with Chemometrics for Rapid Detection of Phyllanthus niruri Adulteration with Leucaena leucocephala. Sains Malaysiana. 2021;50(4):997-1006. doi:10.17576/jsm-2021-5004-10
Leary PE, Crocombe RA, Kammrath BW. Introduction to Portable Spectroscopy. Portable Spectrosc Spectrom. April 2021:1-13. doi:10.1002/9781119636489.ch1
Tubino M, Bianchessi LF, Vila MMDC. Quantitative spot-test analysis of metformin in pharmaceutical preparations using ultraviolet-visible diffuse reflectance spectroscopy. Anal Sci. 2010;26(1):121-124. doi:10.2116/analsci.26.121
Scheeline A. Spectrometry with consumer-quality CMOS cameras. Mob Heal Technol Methods Protoc. 2015;1256:259-275. doi:10.1007/978-1-4939-2172-0_18
Silva WRF, Suarez WT, Reis C, et al. Multifunctional Webcam Spectrophotometer for Performing Analytical Determination and Measurements of Emission, Absorption, and Fluorescence Spectra. J Chem Educ. 2021;98(4):1442-1447. doi:10.1021/acs.jchemed.0c01085
Abbasi H, Nazeri M, Mireei SA. Design and development of a LabVIEW-based LED-induced fluorescence spectroscopy system with applications in non-destructive quality assessment of agricultural products. J Phys Conf Ser. 2016;672(1):012010. doi:10.1088/1742-6596/672/1/012010
Liang Y-Z, Xie P-S, Chan K. Chromatographic Fingerprinting and Metabolomics for Quality Control of TCM. Comb Chem High Throughput Screen. 2010;13(10):943-953. doi:10.2174/138620710793360310
Sima IA, Andrási M, Sârbu C. Chemometric assessment of chromatographic methods for herbal medicines authentication and fingerprinting. J Chromatogr Sci. 2018;56(1):49-55. doi:10.1093/chromsci/bmx080
Bian X, Lu Z, Van Kollenburg G. Ultraviolet-visible diffuse reflectance spectroscopy combined with chemometrics for rapid discrimination of Angelicae Sinensis Radix from its four similar herbs. Anal Methods. 2020;12(27):3499-3507. doi:10.1039/d0ay00285b
Bian XH, Zhang RL, Wang J, Liu P, Lin LG, Tan XY. Rapid quantification of adulterated Panax notoginseng powder by ultraviolet-visible diffuse reflectance spectroscopy combined with chemometrics. Chinese J Anal Chem. 2022;50(3):100055. doi:10.1016/j.cjac.2022.100055
Das A. Portable UV–Visible Spectroscopy – Instrumentation, Technology, and Applications . Portable Spectrosc Spectrom. April 2021:179-207. doi:10.1002/9781119636489.ch8
Scheeline A. Smartphone Technology – Instrumentation and Applications. Portable Spectrosc Spectrom. April 2021:209-235. doi:10.1002/9781119636489.ch9
Rahmat E, Lee J, Kang Y. Javanese Turmeric (Curcuma xanthorrhiza Roxb.): Ethnobotany, Phytochemistry, Biotechnology, and Pharmacological Activities. Evidence-Based Complement Altern Med. 2021;2021(1):9960813. doi:10.1155/2021/9960813
Simamora A, Timotius KH, Yerer MB, Setiawan H, Mun’im A. Xanthorrhizol, a potential anticancer agent, from Curcuma xanthorrhiza Roxb. Phytomedicine. 2022;105:154359. doi:10.1016/J.PHYMED.2022.154359
Cuadros-Rodríguez L, Pérez-Castaño E, Ruiz-Samblás C. Quality performance metrics in multivariate classification methods for qualitative analysis. TrAC - Trends Anal Chem. 2016;80:612-624. doi:10.1016/j.trac.2016.04.021
López MI, Callao MP, Ruisánchez I. A tutorial on the validation of qualitative methods: From the univariate to the multivariate approach. Anal Chim Acta. 2015;891:62-72. doi:10.1016/j.aca.2015.06.032
Poh AH, Jamaludin MF, Fadzallah IA, et al. Diffuse reflectance spectroscopic analysis of barium sulfate as a reflection standard within 173–2500 nm: From pure to sintered form. J Near Infrared Spectrosc. 2019;27(6):393-401. doi:10.1177/0967033519868241
Balado Sánchez C, Díaz Redondo RP, Fernández Vilas A, Sánchez Bermúdez AM. Spectrophotometers for labs: A cost-efficient solution based on smartphones. Comput Appl Eng Educ. 2019;27(2):371-379. doi:10.1002/cae.22081
Amma SI, Luo J, Pantano CG, Kim SH. Specular reflectance (SR) and attenuated total reflectance (ATR) infrared (IR) spectroscopy of transparent flat glass surfaces: A case study for soda lime float glass. J Non Cryst Solids. 2015;428:189-196. doi:10.1016/j.jnoncrysol.2015.08.015
Small GW. Chemometrics and near-infrared spectroscopy: Avoiding the pitfalls. TrAC - Trends Anal Chem. 2006;25(11):1057-1066. doi:10.1016/j.trac.2006.09.004
López MI, Colomer N, Ruisánchez I, Callao MP. Validation of multivariate screening methodology. Case study: Detection of food fraud. Anal Chim Acta. 2014;827:28-33. doi:10.1016/j.aca.2014.04.019
Yang SK, Zhang JP, Xu YH, Deng XN. Ultraviolet-visible absorption spectral properties of sudan III in different solvents. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy Spectr Anal. 2007;27(2):325-328. https://pubmed.ncbi.nlm.nih.gov/17514967/. Accessed July 16, 2024.
Taunaumang H, Tuladi D, Wakary P. Physical Structure Analysis and Optical Properties of Sudan III Thin Film. Adv Mater Phys Chem. 2021;11(06):101-110. doi:10.4236/ampc.2021.116010
Pastres R, Panzeri AL, Visentin D, Causin V. Determination by infrared spectroscopy of triacetin content in diesel: A tool for countering designer fuel frauds. Talanta Open. 2022;5:100109. doi:10.1016/j.talo.2022.100109
Suresh H, Behera AR, Selvaraja SK, Pratap R. Quantification of Curcuminoids in Turmeric Using Visible Reflectance Spectra and a Decision-Tree Based Chemometric Approach. J Electrochem Soc. 2020;167(16):167528. doi:10.1149/1945-7111/abd603
Kim HJ, Kim DJ, Karthick SN, et al. Curcumin dye extracted from Curcuma longa L. used as sensitizers for efficient dye-sensitized solar cells. Int J Electrochem Sci. 2013;8(6):8320-8328. doi:10.1016/s1452-3981(23)12891-4
de Araújo Gomes A, Azcarate SM, Špánik I, Khvalbota L, Goicoechea HC. Pattern recognition techniques in food quality and authenticity: A guide on how to process multivariate data in food analysis. TrAC - Trends Anal Chem. 2023;164:117105. doi:10.1016/j.trac.2023.117105
Heryanto R, Iswantini D, Rohaeti E, Rafi M, Mulyati, Pamungkas WS. the Development and Quantitative Performance Test of Low-Cost Visible Spectrophotometer and Its Comparison With Commercial Spectrophotometer. Malaysian J Anal Sci. 2023;27(3):463-470. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164156272&partnerID=40&md5=1bc05980222fccb0dfe76a01a13d2a34.
Alomar TS, AlMasoud N, Xu Y, et al. Simultaneous Multiplexed Quantification of Banned Sudan Dyes Using Surface Enhanced Raman Scattering and Chemometrics. Sensors. 2022;22(20):7832. doi:10.3390/s22207832
Williams P, Antoniszyn J. Near-Infrared Technology: Getting the Best out of Light. First edit. [Stellenbosch, South Africa]: African Sun Media under the Sun Press imprint; 2019. doi:10.18820/9781928480310
Wu X, Li G, Fu X, He F, Wu W. Effect of spectrum measurement position on detection of Klason lignin content of snow pears by a portable NIR spectrometer. Food Energy Secur. 2023;12(3):e447. doi:10.1002/fes3.447
Heil K, Schmidhalter U. An evaluation of different nir-spectral pre-treatments to derive the soil parameters c and n of a humus-clay-rich soil. Sensors. 2021;21(4):1-24. doi:10.3390/s21041423
Rafi M, Jannah R, Heryanto R, Kautsar A, Septaningsih DA. UV-Vis spectroscopy and chemometrics as a tool for identification and discrimination of four Curcuma species. Int Food Res J. 2018;25(2):643-648.
Jiménez-Carvelo AM, Arroyo-Cerezo A, Bikrani S, Jia W, Koidis A, Cuadros-Rodríguez L. Rapid and non-destructive spatially offset Raman spectroscopic analysis of packaged margarines and fat-spread products. Microchem J. 2022;178:107378. doi:10.1016/j.microc.2022.107378
Ruisánchez I, Rovira G, Callao MP. Multivariate qualitative methodology for semi-quantitative information. A case study: Adulteration of olive oil with sunflower oil. Anal Chim Acta. 2022;1206:339785. doi:10.1016/j.aca.2022.339785
Petrakis EA, Cagliani LR, Polissiou MG, Consonni R. Evaluation of saffron (Crocus sativus L.) adulteration with plant adulterants by1H NMR metabolite fingerprinting. Food Chem. 2015;173:890-896. doi:10.1016/j.foodchem.2014.10.107
Chen Y, Wu HL, Wang T, et al. Rapid detection and quantification of adulteration in saffron by excitation–emission matrix fluorescence combined with multi-way chemometrics. J Sci Food Agric. 2024;104(3):1391-1398. doi:10.1002/jsfa.13028
DOI: 10.15408/jkv.v10i2.40351
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Rudi Heryanto, Dyah Iswantini, Eti Rohaeti, Mohamad Rafi, Novia Rahma, Nurul Hafshah, Eni Mardiana
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.