Modified Natural Rubber Based on the Sulphur Curing System as Rubber Compound Formulation on Basic Design of Seismic Bearing

Adi Cifriadi, Purwantiningsih Sugita, Tetty Kemala, Siti Nikmatin, Santi Puspitasari, Asron Ferdian Falaah, Usman Wijaya

Abstract


Indonesia is highly susceptible to earthquakes, with the southern and western coasts of Java and Sumatra being the most vulnerable regions. Due to this vulnerability, it is necessary to establish a culture of disaster mitigation in the most fertile and heavily populated islands to reduce the number of fatalities and economic losses caused by earthquakes. One of the promising real-world seismic base isolation methods is using a rubber seismic bearing constructed of rubber and metal layers. This study aimed to examine the typical behavior of natural rubber compounds subjected to various sulfur-curing processes as basic designs in the manufacture of rubber seismic bearings. The experiment was carried out by arranging the sulfur curing system into three categories, namely an efficient which applied N-cyclohexyl-2-benzothiazole sulfonamide (CBS)/Sulfur (S) ratio as 1.4/0.15 and 1.4/0.25, semi-efficient with CBS/S ratio of 1.4/1.4 and 1.4/1.7, and conventional with CBS/S ratio of 1.4/3.0 and 1.4/3.5. The results showed that the ideal modification condition for NR macromolecule chain found in seismic-bearing rubber compound was a semi-efficient sulfur curing system with a CBS/S ratio of 1.4/1.4. It suggested that a semi-efficient sulfur curing system was appropriate for developing rubber compound formulation for seismic rubber bearings, mainly for low-damping types.

Keywords


Earthquakes; damping; mechanical properties; natural rubber; seismic isolator

References


Supriyadi B, Windarto AP, Soemartono T, Mungad. Classification of natural disaster prone areas in Indonesia using K-means. Int J Grid Distrib Comput. 2018; 11(8):87–98. doi:10.14257/ijgdc.2018.11.8.08

Khomarudin MR, Strunz G, Ludwig R, et al. Hazard analysis and estimation of people exposure as contribution to tsunami risk assessment in the West Coast of Sumatra, the South Coast of Java and Bali. Zeitschrift fur Geomorphol. 2010;54(3):337–356. doi:10.1127/0372-8854/2010/0054S3-0031

Mulia IE, Gusman AR, Williamson AL, Satake K. An Optimized array configuration of tsunami observation network off Southern Java, Indonesia. J Geophys Res Solid Earth. 2019;124(9):9622–9637. doi:10.1029/2019JB017600

Pribadi KS, Kusumastuti D, Sagala SAH, Wimbardana R. Post-disater housing reconstruction in Indonesia: Review and lesson from Aceh, Yogyakarta, West Java, and West Sumatera Earthquakes. In Disaster Risk Reduction (Methods, Approaches and Practice). Tokyo: Springer;2013. doi:10.1007/978-4-431-54255-1

Arlym L, Hermon D, Lanin D, Oktorie O, Putra A. A policy model of preparedness the general hospital in reducing victims of earthquake and tsunami disasters in Siberut Mentawai Island, Indonesia. Int J Recent Technol Eng. 2019;8(3):89–93. doi: 10.35940/ijrte.C3890.098319

Li JC, Zhang HS, Zhao XY, et al. Development of high damping natural rubber/butyl rubber composites compatibilized by isobutylene-isoprene block copolymer for isolation bearing. Express Polym Lett. 2019;13(8):686-696. doi:10.3144/expresspolymlett.2019.58

Islam ABMS, Jameel M, Jumaat MZ. Seismic isolation in buildings to be a practical reality: Behavior of structure and installation technique. J Eng Technol Res. 011;3(4):99-117. http://www.academicjournals.org/JETR/PDF/pdf 2011/Apr/Islam.pdf.

Hu JW. Response of seismically isolated steel frame buildings with sustainable lead-rubber bearing (LRB) isolator devices subjected to near-fault (NF) ground motions. Sustain. 2015;7(1):111-137. doi:10.3390/su7010111

Rahnavard R, Thomas RJ. Numerical evaluation of steel-rubber isolator with single and multiple rubber cores. Eng Struct. 2019;198. doi:10.1016/j.engstruct.2019.109532

Weisman J, Warn GP. Stability of elastomeric and lead-rubber seismic isolation bearings. J Struct Eng. 2012;138(2):215-223. doi:10.1061/(asce)st.1943-541x.0000459

Tiong PLY, Or TT, Dusi A. A New generation of high damping natural rubber bearings : Material development, testing and applications. In: Proceedings of 16th World Conf Earthq. Eng. 2017.

Rahim MISA, Kamarudin AM. On the variation of the experimental shear modulus of elastomers. IOP Conf Ser Mater Sci Eng. 2009;11:012007. doi:10.1088/1757-899x/11/1/012007

Hwang JS, Wu JD, Pan TC, Yang G. A mathematical hysteretic model for elastomeric isolation bearings. Earthq Eng Struct Dyn. 2002;31(4):771-789. doi:10.1002/eqe.120

Saedniya M, Talaeitaba SB. Numerical modeling of elastomeric seismic isolators for determining force–displacement curve from cyclic loading. Int J Adv Struct Eng. 2019;11(3):361-376. doi:10.1007/s40091-019-00238-6

Zhao X, Yang J, Zhao D, et al. Natural rubber/nitrile butadiene rubber/hindered phenol composites with high-damping properties. Int J Smart Nano Mater. 22015;6(4):239-250. doi:10.1080/19475411.2015.1131399

Wang J, Zhao X, Wang W, et al. Significantly improving strength and damping performance of nitrile rubber via incorporating sliding graft copolymer. Ind Eng Chem Res. 2018;57(49):16692-16700. doi:10.1021/acs.iecr.8b03871

Liu K, Lv Q, Hua J. Study on damping properties of HVBR/EVM blends prepared by in situ polymerization. Polym Test. 2017;60:321-325. doi:10.1016/j.polymertesting.2017.02.026

Kovuttikulrangsie S, Sakdapipanich JT. The molecular weight (MW) and molecular weight distribution (MWD) of NR from different age and clone Hevea trees. Songklanakarin J Sci Technol. 2005;27(2):338-342.

Tamási K, Kollár MS. Effect of different sulfur content in Natural Rubber mixtures on their thermo-mechanical and surface properties. Int J Eng Res Sci. 2018;4(2):28-37.

Zhao F, Bi W, Zhao S. Influence of crosslink density on mechanical properties of natural rubber vulcanizates. J Macromol Sci Part B Phys. 2011;50(7):1460-1469. doi:10.1080/00222348.2010.507453

American Society for Testing and Materials. Standard Test Method for Rubber Property – Durometer Hardness (ASTM D 2240). Pennsylvania, USA: ASTM; 2015.

American Society for Testing and Materials. Standard Test Method for Vulcanized Rubber and Thermoplastic Elastomer – Tension (ASTM D 412). Pennsylvania, USA: ASTM; 2016.

American Society for Testing and Materials. Standard Test Method for Tear Strength of Conventional Vulcanized Rubber and Thermoplastic Elastomers (ASTM D 624). Pennsylvania, USA: ASTM; 2020.

American Society for Testing and Materials. Standard Test Method for Rubber Property – Resilience Using a Goodyear – Healey Rebound Pendulum (ASTM D 1054). Pennsylvania, USA: ASTM; 2007.

American Society for Testing and Materials. Standard Test Method for Rubber Property – Compression Set (ASTM D 395). Pennsylvania, USA: ASTM; 2018.

Ngamsurat S, Boonkerd K, Leela-Adisorn U, Potiyaraj P. Curing characteristics of natural rubber filled with gypsum. Energy Procedia. 2011;9:452-458. doi:10.1016/j.egypro.2011.09.051

Rattanasom N, Poonsuk A, Makmoon C. Effect of curing system on the mechanical properties and heat aging resistance of natural rubber/tire tread reclaimed rubber blends. Polym Test. 2005;24(6):728-732. https://doi.org/10.1016/j.polymertesting.2005.04.008

Kong Y, Chen X, Li Z, Li G, Huang Y. Evolution of crosslinking structure in vulcanized natural rubber during thermal aging in the presence of constant compressive stress. Polym Degrad Stab. 2023;217:110513. https://doi.org/10.1016/j.polymdegradstab.2023.110513

Hayeemasae N, Waesateh K, Soontaranon S, Masa A. Effect of vulcanization systems and crosslink density on tensile properties and network structure of natura rubber. J Teknol. 2022;84(6):181-187. https://doi.org/10.11113/jurnalteknologi.v84.16467%7C

Kim DY, Park JW, Lee DY, Seo KH. Correlation between the crosslink characteristics and mechanical properties of natural rubber compound via accelerators and reinforcement. Polymers (Basel). 2020;12(9):1-14. doi:10.3390/polym12092020

Bhowmick AK, Neogi C, Basu SP. Threshold tear strength of carbon black filled rubber vulcanizates. J Appl Polym Sci. 1990;41(5-6):917-928. doi:10.1002/app.1990.070410504

Movahed SO, Ansarifar A, Mirzaie F. Effect of various efficient vulcanization cure systems on the compression set of a nitrile rubber filled with different fillers. J Appl Polym Sci. 2015;132(8):1-10. doi:10.1002/app.41512

Bassi AC. Dynamic modulus of rubber by impact and rebound measurements. Polym Eng Sci. 1978;18(10):750-754. doi:10.1002/pen.760181004

Luo R, Shi H, Guo J, Huang L, Wang J. A nonlinear rubber spring model for the dynamics simulation of a high-speed train. Veh Syst Dyn. 2020;58(9):1367-1384. doi:10.1080/00423114.2019.1624788

Si M, Wu Y, Xu H, Li A, Xu Y, Lu S, Wang H. The seismic performance evaluation of unbonded laminated rubber bearings with end rotation. Structures. 2023;51:926-935. https://doi.org/10.1016/j.istruc.2023.03.070

Ismail R, Mahadi ZA, Ishak IS. The effect of carbon black filler to the mechanical properties of natural rubber as base isolation system. IOP Conf Ser Earth Environ. Sci. 2018;140(1). doi:10.1088/1755-1315/140/1/012133

Shahabi AB, Ahari GZ, Barghian M. Base isolation systems-a state of the art review according to their mechanism. J Rehabil Civ Eng. 2020;8(2):37-61. doi:10.22075/JRCE.2


Full Text: PDF

DOI: 10.15408/jkv.v10i2.39963

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Adi Cifriadi, Purwantiningsih Sugita, Tetty Kemala, Siti Nikmatin, Santi Puspitasari, Asron Ferdian Falaah, Usman Wijaya

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.