Cloning of the GOX-Xho Gene IPBCC 08.610 into Plasmid pTA2 and Its Characterization

Hanifah Aryani, Nadhira Fathiaz Akbar, Asrul Muhamad Fuad, Laksmi Ambarsari, Popi Asri Kurniatin

Abstract


Glucose oxidase (GOX) from Aspergillus niger catalyzes the oxidation of β-D-glucose to δ-gluconolactone and hydrogen peroxide, making it valuable for industrial applications. Intracellular GOX exhibits higher activity than its extracellular counterpart. This study focuses on enhancing the extracellular production of GOX through recombinant DNA technology. This study aimed to reconstruct the GOX gene by adding XhoI sites at both ends, inserting a glu-ala-glu-ala spacer at the 5' end, and introducing an XbaI site at the 3' end. These modifications facilitate the cloning of the GOX-Xho gene into the pTA2 vector and its subsequent ligation into the pPICZαB expression vector, allowing for extracellular production of GOX through fusion with the α-mating factor (α-MF) signal peptide. The GOX-Xho gene was successfully amplified, cloned, and characterized. The pTA2-GOX-Xho recombinant plasmid was verified through sequencing and restriction analysis, confirming the present and correct orientation of the 1797 bp GOX-Xho gene. However, sequencing revealed several point mutations, necessitating further computational analysis to predict their impact on the enzyme's structure and function before recombinant protein expression.


Keywords


Aspergillus niger, gene cloning, glucose oxidase, pTA2 vector, sequencing

References


Wang F, Chen X, Wang Y, et al. Insights into the Structures, Inhibitors, and Improvement Strategies of Glucose Oxidase. Int J Mol Sci. 2022;23(17). doi:10.3390/ijms23179841

Marín-Navarro J, Roupain N, Talens-Perales D, Polaina J. Identification and Structural Analysis of Amino Acid Substitutions that Increase the Stability and Activity of Aspergillus niger Glucose Oxidase. PLoS One. 2015;10(12):e0144289. https://doi.org/10.1371/journal.pone.0144289

Putri RP. Produksi Dan Pemurnian Enzim Glukosa Oksidase (EC 1.1.3.4) Dari Isolat Aspergillus Niger (IPBCC.08.610). Institut Pertanian Bogor (IPB); 2012.

Fasim A, More VS, More SS. Large-scale production of enzymes for biotechnology uses. Curr Opin Biotechnol. 2021;69:68-76. doi:https://doi.org/10.1016/j.copbio.2020.12.002

Kurniatin PA, Ambarsari L, Khanza ADA, Setyawati I, Seno DSH, Nurcholis W. Characteristics of Glucose Oxidase Gene (GGOx) from Aspergillus niger IPBCC 08.610. J Kim Val. 2020;6(1):9-18. doi:10.15408/jkv.v6i1.9440

Putri RA. Konstruksi Gen Glukosa Oksidase Untuk Subkloning Ke Dalam Plasmid PPICZα Dengan Penambahan Oligonukleotida Penyandi Spacer Peptida. Institut Pertanian Bogor (IPB); 2020.

Medina GN, de los Santos T, Díaz-San Segundo F. Generation of Replication Deficient Human Adenovirus 5 (Ad5)Adenovirus 5 (Ad5) Vectored FMD VaccinesFMD vaccines. In: Brun A, ed. Vaccine Technologies for Veterinary Viral Diseases: Methods and Protocols. Springer US; 2022:155-175. doi:10.1007/978-1-0716-2168-4_9

TOYOBO. Instruction Manual TArget Clone 2004. TOYOBO CO., LTD; 2004.

Aryani H, Akbar NF, Kurniatin PA, Fuad AM, Ambarsari L. Optimization of PCR Conditions for Adding Xho I Restriction Sites to the Glucose Oxidase Gene of Aspergillus niger IPBCC 08 . 610. Curr Biochem. 2024;11(1):14-23. doi:https://doi.org/10.29244/cb.11.1.2

Sambrook J, Russel D. Molecular Cloning : A Laboratory Manual. Third edition. Cold Spring Harbor, N.Y. : Cold Spring Harbor Laboratory Press, [2001] ©2001; 2001. https://search.library.wisc.edu/catalog/999897924602121

Thermo Scientific. Xbal Product Information. Thermo Sci Prod Inf. Published online 2012:9-11. https://tools.thermofisher.com/content/sfs/manuals/MAN0012177_XbaI_10_UuL_1500U_UG.pdf

Gaffar S. Produksi Protein Rekombinan Dalam Sistem Ekspresi Pichia Pastoris.; 2010.

Zhao L, Geng J, Guo Y, et al. Expression of the Thermobifida fusca xylanase Xyn11A in Pichia pastoris and its characterization. BMC Biotechnol. 2015;15(1). doi:10.1186/s12896-015-0135-y

Bunu SJ, Otele D, Alade T, Dodoru R. Determination of serum DNA purity among patients undergoing antiretroviral therapy using NanoDrop-1000 spectrophotometer and polymerase chain reaction. Biomed Biotechnol Res J. 2020;4(3):214-219. doi:10.4103/bbrj.bbrj_68_20

Ayling C. TA Cloning Approaches to Cloning DNA with Damaged Ends DNA. In: Scarlett G, ed. DNA Manipulation and Analysis. Springer US; 2023:55-64. doi:10.1007/978-1-0716-3004-4_5

Dabney J, Meyer M, Pääbo S. Ancient DNA damage. Cold Spring Harb Perspect Biol. 2013;5(7):a012567.

Pascal JM. DNA and RNA ligases: structural variations and shared mechanisms. Curr Opin Struct Biol. 2008;18(1):96-105.

Yao S, Hart DJ, An Y. Recent advances in universal TA cloning methods for use in function studies. Protein Eng Des Sel. 2016;29(11):551-556. doi:10.1093/protein/gzw047

Roy U. A Comparative Study on Different Plasmid Isolation Procedures. Int J Pure Appl Biosci. 2018;6(5):533-541. doi:10.18782/2320-7051.6988

McKiernan HE, Danielson PB. Chapter 21 - Molecular Diagnostic Applications in Forensic Science. In: Patrinos GP, ed. Molecular Diagnostics (Third Edition). Academic Press; 2017:371-394. doi:https://doi.org/10.1016/B978-0-12-802971-8.00021-3

Gibson EG, Oviatt AA, Osheroff N. Two-Dimensional Gel Electrophoresis to Resolve DNA Topoisomers. Methods Mol Biol. 2020;2119:15-24. doi:10.1007/978-1-0716-0323-9_2

Park M, Won J, Choi BY, Lee CJ. Optimization of primer sets and detection protocols for SARS-CoV-2 of coronavirus disease 2019 (COVID-19) using PCR and real-time PCR. Exp Mol Med. 2020;52(6):963-977. doi:10.1038/s12276-020-0452-7

Shenghe C, Wei S, Zhaoxi Z, Jingyang L, Minjie D, Haiyan S. A weird DNA band in PCR and its cause. J Plant Sci Mol Breed. 2016;5(1):2. doi:10.7243/2050-2389-5-2

González-Pech RA, Stephens TG, Chan CX. Commonly misunderstood parameters of NCBI BLAST and important considerations for users. Bioinformatics. 2018;35(15):2697-2698. doi:10.1093/bioinformatics/bty1018

Brown T. Genomes. In: 2nd ed. Wiley-Liss; 2002. https://www.ncbi.nlm.nih.gov/books/NBK21114/

Petrović D, Frank D, Kamerlin SCL, Hoffmann K, Strodel B. Shuffling Active Site Substate Populations Affects Catalytic Activity: The Case of Glucose Oxidase. ACS Catal. 2017;7(9):6188-6197. doi:10.1021/acscatal.7b01575

Alimah SN, Sumaryada TI, Nurcholis W, Ambarsari L. Molecular Docking Study of IPBCC.08.610 Glucose Oxidase Mutant for Increasing Gluconic Acid Production. J Kim Sains dan Apl Vol 25, No 5 Vol 25 Issue 5 Year 2022DO - 1014710/jksa255169-178. Published online May 31, 2022. https://ejournal.undip.ac.id/index.php/ksa/article/view/44951

Puspita PJ, Ambarsari L, Adiva A, Sumaryada TI. In Silico Analysis of Glucose Oxidase H516r and H516d Mutations for an Enzymatic Fuel Cell. J Kim Val. 2021;7(2):83-93. doi:10.15408/jkv.v7i2.20733

Witt S, Wohlfahrt G, Schomburg D, Hecht HJ, Kalisz HM. Conserved arginine-516 of Penicillium amagasakiense glucose oxidase is essential for the efficient binding of β-d-glucose. Biochem J. 2000;347(2):553-559. doi:10.1042/bj3470553




DOI: 10.15408/jkv.v10i2.39602

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Hanifah Aryani, Nadhira Fathiaz Akbar, Asrul Muhamad Fuad, Laksmi Ambarsari, Popi Asri Kurniatin

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.