Comparative Study of Voltammetric Analysis with UV-Vis Spectrophotometry in Determining the Results of Liquid-Liquid Extraction of Samarium (III)
Abstract
Rare earth elements (REEs) are garnering significant attention in diverse fields due to their important and fascinating properties. Among these REEs, samarium (Sm) has numerous advantages and benefits. Before using Sm, it must be separated from its natural sources due to the formation of complex compounds with other elements. To achieve this, liquid-liquid extraction emerges as one of the REE separation methods, presenting several advantages, including a streamlined process. Various methods can be used to analyze extraction results, such as ICP-MS and XRF. In comparison, UV-Vis spectrophotometry has significant advantages compared to other methods, it provides a simple approach to determining the level of a substance, and the results given are quite accurate, while differential pulse voltammetry (DPV) is one of the electrochemical analysis methods that is expected to provide faster and accurate analysis results. This study aims to determine the value of analytical parameters, Kd of Sm(III) liquid-liquid extraction results using DPV analysis and UV-Vis spectrophotometry methods. The DPV method yielded LoD 1.24 mg/L, accuracy 98.39%, and %recovery 106.69%. The extraction data obtained Kd Sm values ranging from 6.0019-7.3860. The UV-Vis spectrophotometry results provided an individual extraction efficiency of Sm(III) of 88.54%. This method obtained LoD 0.71 mg/L, accuracy 96.00%, and %recovery 104.00%.
Keywords
References
Hamzah Y, Mardhiansyah M, Firdaus LN. Characterization of Rare Earth Elements in Tailing of Ex-Tin Mining Sands from Singkep Island, Indonesia. Aceh International Journal of Science and Technology. 2018;7(2):131-137. doi:10.13170/aijst.7.2.8622
Syafrizal, Hakim AYA, Sulastri A. Geochemical Distribution of REE and Grain Size Analysis of Heavy Mineral Associated with Tin Placer-Type Deposit, Bangka. In: IOP Conference Series: Earth and Environmental Science. Vol 1031. Institute of Physics; 2022. doi:10.1088/1755-1315/1031/1/012008
Subasinghe CS, Ratnayake AS, Roser B, et al. Global distribution, genesis, exploitation, applications, production, and demand of industrial heavy minerals. Arabian Journal of Geosciences. 2022;15(20). doi:10.1007/s12517-022-10874-0
Bahti HH, Mulyasih Y, Anggraeni A. Extraction and Chromatographic Studies on Rare-Earth Elements (REEs) from Their Minerals: The Prospect of REEs Production in Indonesia?; 2011. http://en.wikipedia.org/wiki/Rare_earth_element
Anggraeni A, Sofyatin T, Bahti HH. Ekstraksi Gadolinium dan Samarium Dari Mineral Monasit secara Ekstraksi dengan Ligan Etilendiamintrimetilenfosfonat (EDTMP). Chimica et Natura Acta. 2014;2(3):166-172.
Koventhan C, Pandiyarajan S, Chen SM. Perovskite-type samarium cobalt oxide adorned hexagonal tungsten sulfide nanocomposites as a high-performance electrode material for symmetric supercapacitors. J Energy Storage. 2023;72. doi:10.1016/j.est.2023.108171
Hou L, Cui X, Yang Y, Lin L, Xiao Q, Jin G. Chrome-free samarium-based protective coatings for magnesium alloys. In: Physics Procedia. Vol 50. Elsevier B.V.; 2013:261-266. doi:10.1016/j.phpro.2013.11.041
Li X, Li Z, Orefice M, Binnemans K. Metal Recovery from Spent Samarium-Cobalt Magnets Using a Trichloride Ionic Liquid. ACS Sustain Chem Eng. 2019;7(2):2578-2584. doi:10.1021/acssuschemeng.8b05604
Mishra BB, Devi N, Sarangi K. Solvent extraction and separation of samarium from transition and rare-earth metals using phosphonium ionic liquid Cyphos IL 104. Monatsh Chem. 2021;152(7):767-775. doi:10.1007/s00706-021-02792-w
Ismail NA, Abd Aziz MA, Hisyam A, Abidin MA. Separation of samarium from medium rare earth mixture using multi-stage counter-current extraction. Chem Eng Commun. 2021;208(5):764-774. doi:10.1080/00986445.2020.1746654
Purwani M, Pusat Teknologi Akselerator dan Proses Bahan P, Jl Babarsari Kotak Pos B. The Extraction of Neodymium Concentrates using Tri Octyl Amine. Jurnal Iptek Nuklir Ganendra. 2014;17(1):17-26.
Ahmed S, Amine M. Optimization Extraction of Terbium by Supported Liquid Membrane Using D2EHPA and TOPO. Vol 38.; 2019.
Rodionova OYe, Tikhomirova TI, Pomerantsev AL. Spectrophotometric determination of Rare Earth Elements in aqueous nitric acid solutions for process control. Anal Chim Acta. 2015;869:59-67. doi:https://doi.org/10.1016/j.aca.2015.02.037
Anni A, Sepril AM, Andrew P, Abdul M. Special Issue II) August (2018) Res. Vol 22. www.mcrals.info.
Veerasamy N, Sahoo SK, Murugan R, et al. Icp-ms measurement of trace and rare earth elements in beach placer-deposit soils of odisha, east coast of india, to estimate natural enhancement of elements in the environment. Molecules. 2021;26(24). doi:10.3390/molecules26247510
Wysocka I. Determination of rare earth elements concentrations in natural waters – A review of ICP-MS measurement approaches. Talanta. 2021;221:121636. doi:https://doi.org/10.1016/j.talanta.2020.121636
Baghaliannejad R, Aghahoseini M, Amini MK. Determination of rare earth elements in uranium materials by ICP-MS and ICP-OES after matrix separation by solvent extraction with TEHP. Talanta. 2021;222:121509. doi:https://doi.org/10.1016/j.talanta.2020.121509
Kurniawati S, Santoso M, Lestiani DD, Adventini N, Syahfitri WYN. Analytical Capabilities of EDXRF for Determination of Rare Earth Elements. Jurnal Sains dan Teknologi Nuklir Indonesia. 2021;22(1):1. doi:10.17146/jstni.2021.22.1.5815
Makombe M, van der Horst C, Silwana B, Iwuoha E, Somerset V. Voltammetric and spectroscopic determination of rare earth elements in fresh and surface water samples. Environments - MDPI. 2018;5(10):1-10. doi:10.3390/environments5100112
Wyantuti S, Pratomo U, Manullang LA, Hendrati D, Hartati YW, Bahti HH. Development of differential pulse voltammetric method for determining samarium (III) through electroanalytical study of the metal ion in acetonitrile using Box–Behnken design. Heliyon. 2021;7(4). doi:10.1016/j.heliyon.2021.e06602
Santhy W, Uji P, Wahyuni HY, Anni A, Husein B. Fast and Simultaneous Detection of Sm, Eu, Gd, Tb and Dy using combination of Voltammetry Method and Multivariate Analysis. Res J Chem Environ. 2018;22.
Wyantuti S, Pratomo U, Asyifadewi SA, Hartati YW, Bahti HH. Differential pulse voltammetry study for quantitative determination of dysprosium (III) in acetonitrile solution. International Journal of Renewable Energy Development. 2020;10(2):191-199. doi:10.14710/ijred.2021.33486
Wyantuti S, Iskandar J, Putri Fauzia R, Bahti HH. Optimization of Hydrothermal Synthesis of Dysprosium Oxide Nanoparticles-Attached-Polyethyleneglycol Template Using Response Surface Methodology-Box-Behnken. Published online 2023. www.scientific.net.
Miller JN, Miller JC. Statistics and Chemometrics for Analytical Chemistry, 6th Edition.; 2010. https://api.semanticscholar.org/CorpusID:102663715
DOI: 10.15408/jkv.v10i2.38941
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Santhy Wyantuti
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.