Dealumination Effect on ZSM-5 as a Bimetal Fe-Co Support for The Oxidative Desulfurization Process Catalyst

Lisa Adhani, Bambang Heru Susanto, Mohammad Nasikin

Abstract


Petroleum fuel is still the main energy source today but causes environmental problems such as SOx gas emissions. The Oxidative Desulfurization (ODS) method removes sulfur from fuel under mild conditions. ZSM-5 is a catalyst framework considered promising in the ODS process but the small pores cause a steric barrier. The hydrophobic, mesoporous Fe-Co/ZSM-5Hierarchy catalyst was designed using the dealumination method with steam treatment to overcome the steric barrier and biphasic hindrances which are problems in this ODS process. The Fe-Co/ZSM-5Hierarchy catalyst is effective for the ODS process at a temperature of 45 °C, 45 min, the amount of catalyst used is 0.2 g, oxidant at an O/S ratio of 2, and without mass transfer agents. The embedded Fe-Co ratio shows effective mass activity by providing a TOF number of 205 h-1 on the Fe-Co(5)/ZSM-5 Hierarchy and 157 h-1 on the Fe-Co(15)/ZSM-5 Hierarchy catalyst.


Keywords


Hierarchy; ODS; biphasic; steric; mesopore

References


Barker J, Reid J, Wilmot E, et al. Investigations of Diesel Injector Deposits Characterization and Testing. In: SAE Technical Papers Series.; 2020:21. doi:10.4271/2020-01-2094

Houda S, Lancelot C, Blanchard P, Poinel L, Lamonier C. Oxidative desulfurization of heavy oils with high sulfur content: A review. Catalysts. Published online 2018. doi:10.3390/catal8090344

Godin K, Sapinski JP, Dupuis S. The transition to net zero energy (NZE) housing: An integrated approach to market, state, and other barriers. Cleaner and Responsible Consumption. Published online 2021. doi:10.1016/j.clrc.2021.100043

Manab Idris A, Sasongko N, Kuntjoro Y. Energy Conversion and Conservation Technology in Facing Net Zero-Emission Conditions and Supporting National Defense. Trends in Renewable Energy. Published online 2022. doi:10.17737/tre.2022.8.1.00139

Rajendran A, Cui TY, Fan HX, Yang ZF, Feng J, Li WY. A comprehensive review on oxidative desulfurization catalysts targeting clean energy and environment. J Mater Chem A Mater. 2020;85(5):2246-2285. doi:10.1039/c9ta12555h

Zhang J, Bai R, Feng Z, Li J. Amide-assisted synthesis of TS-1 zeolites with active Ti(OH2)2(OH)2(OSi)2 sites toward efficient oxidative desulfurization. Appl Catal B. 2024;342:123339. doi:10.1016/j.apcatb.2023.123339

Zhu Z, Ma H, Liao W, et al. Insight into tri-coordinated aluminum dependent catalytic properties of dealuminated Y zeolites in oxidative desulfurization. Appl Catal B. 2021;288(February):120022. doi:10.1016/j.apcatb.2021.120022

Wang Y, Sun C, Wang R, et al. Preparation of Amphiphilic Ti/ZSM-5 Zeolite and Its Catalytic Performance in Oxidative Desulfurization. Gaodeng Xuexiao Huaxue Xuebao/Chemical Journal of Chinese Universities. 2019;40(6):1265-1270. doi:10.7503/cjcu20180770

Jafarinasab M, Akbari A, Omidkhah M, Shakeri M. An Efficient Co-Based Metal-Organic Framework Nanocrystal (Co-ZIF-67) for Adsorptive Desulfurization of Dibenzothiophene: Impact of the Preparation Approach on Structure Tuning. Energy and Fuels. 2020;34(10):12779-12791. doi:10.1021/acs.energyfuels.0c01888

Jafarinasab M, Akbari A. Co-ZIF-67 encapsulated phosphomolybdic acid as a hybrid catalyst for deep oxidative desulfurization. J Environ Chem Eng. 2021;9(6):106472. doi:10.1016/j.jece.2021.106472

Dashtpeyma G, Shabanian SR. Efficient photocatalytic oxidative desulfurization of liquid petroleum fuels under visible-light irradiation using a novel ternary heterogeneous BiVO4-CuO/modified natural clinoptilolite zeolite. J Photochem Photobiol A Chem. 2023;445:115024. doi:10.1016/j.jphotochem.2023.115024

Yao Y, Yang Z, Zheng P, Diao Z. Enhancing the accessible TiO6 concentration and the hydrophobicity of hierarchical TS-1 zeolites for alkene epoxidation and oxidative desulfurization. Chemical Engineering Journal. 2023;475. doi:10.1016/j.cej.2023.146053

Kargar H, Ghahramaninezhad M, Shahrak MN, Balula SS. An Effective Magnetic Catalyst for Oxidative Desulfurization of Model and Real Fuels: Fe3O4/ZIF-8/TiO₂. Microporous and Mesoporous Materials. 2021;317(October 2020):110992. doi:10.1016/j.micromeso.2021.110992

Tugrul Albayrak A, Tavman A. Sono-oxidative desulfurization of fuels using heterogeneous and homogeneous catalysts: A Comprehensive Review. Ultrason Sonochem. Published online 2021:105845. doi:10.1016/j.ultsonch.2021.105845

Yang G, Han J, Liu Y, Qiu Z, Chen X. The synthetic strategies of hierarchical TS-1 zeolites for the oxidative desulfurization reactions. Chin J Chem Eng. 2020;28(9):2227-2234. doi:10.1016/j.cjche.2020.06.026

Hartmann M, Thommes M, Schwieger W. Hierarchically-Ordered Zeolites: A Critical Assessment. Adv Mater Interfaces. 2021;8(4, 2001841):1-38. doi:10.1002/admi.202001841

Chen L, Yuan ZY. Design strategies of supported metal-based catalysts for efficient oxidative desulfurization of fuel. Journal of Industrial and Engineering Chemistry. 2022;108:1-14. doi:10.1016/j.jiec.2021.12.025

Song Y, Bai J, Jiang S, et al. Co-Fe-Mo mixed metal oxides derived from layered double hydroxides for deep aerobic oxidative desulfurization. Fuel. 2021;306(1-2):121751. doi:10.1016/j.fuel.2021.121751

Rezvani MA, Maleki Z. Facile synthesis of inorganic–organic Fe 2 W 18 Fe 4 @NiO@CTS hybrid nanocatalyst induced efficient performance in oxidative desulfurization of real fuel. Appl Organomet Chem. Published online 2019. doi:10.1002/aoc.4895

Naghavi M, Mazloom G, Akbari A, Banisharif F. Deep oxidative desulfurization by sulfated alumina catalyst using ferrate (Fe(VI)) oxidant derived from scrap iron. Chemical Engineering Research and Design. 2021;174:454-462. doi:10.1016/j.cherd.2021.08.029

Eseva E, Dunko A, Latypova S, et al. Cobalt-manganese spinel structure catalysts for aerobic oxidative desulfurization. Fuel. 2024;357. doi:10.1016/j.fuel.2023.129689

Nie L, Li S, Gao X, et al. Sensitive visual detection of norfloxacin in water by smartphone assisted colorimetric method based on peroxidase-like active cobalt-doped Fe3O4 nanozyme. J Environ Sci (China). 2025;148:198-209. doi:10.1016/j.jes.2023.12.022

Pereira Roldão C. Synthesis and comparative evaluation of HZSM-5 and NaZSM-5 zeolites in the catalytic dehydration of glycerol. Published online 2024. doi:10.21203/rs.3.rs-3940676/v1

Krisnandi YK, Nurani DA, Agnes A, et al. Hierarchical MnOx/ZSM-5 as heterogeneous catalysts in conversion of delignified rice husk to levulinic acid. Indonesian Journal of Chemistry. Published online 2019. doi:10.22146/ijc.28332

Qin Z, Shen W, Zhou S, et al. Defect-assisted mesopore formation during Y zeolite dealumination: The types of defect matter. Microporous and Mesoporous Materials. 2020;303:110248. doi:10.1016/j.micromeso.2020.110248

Xue YF, Niu YL, Zheng HY, et al. Selective dealumination of ZSM-5 by steaming and its effect on ethanol to propene. Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology. 2021;49(8):1111-1121. doi:10.1016/S1872-5813(21)60064-6

Aziz I, Adhani L, Maulana MI, Ali Marwono M, Dwiatmoko AA, Nurbayti S. Conversion of Nyamplung Oil into Green Diesel through Catalytic Deoxygenation using NiAg/ZH Catalyst. Jurnal Kimia Valensi. 2022;8(2):240-250. doi:10.15408/jkv.v8i2.25943

Adhani L, Fauzi A, Navanti D, Sri T. Rietveld Refinement Analysis of Lampung Natural Zeolite Catalyst Impregnated Fe with Diffraction Method Using MAUD Software. 2023;13(1).

Muhammad Y, Shoukat A, Rahman AU, Rashid HU, Ahmad W. Oxidative desulfurization of dibenzothiophene over Fe promoted Co–Mo/Al2O3 and Ni–Mo/Al2O3 catalysts using hydrogen peroxide and formic acid as oxidants. Chin J Chem Eng. Published online 2018. doi:10.1016/j.cjche.2017.05.015

Rachmawati DE, Susanto BH, Nasikin M. The effect of cerium promoted on Ni-Mo/Al2O3in oxygen adsorption isotherm and oxidative desulfurization study. In: AIP Conference Proceedings. Vol 2827. American Institute of Physics Inc.; 2023:1-7. doi:10.1063/5.0166127

Beshtar M, Khorasheh F, Larimi A, Akbar Asgharinezhad A. Photocatalytic oxidative desulfurization of model fuel using iron-molybdenum nanocatalyst based on cerium oxide (FeyMox/CeO2) under visible light. Fuel. 2024;360(6):130549. doi:10.1016/j.fuel.2023.130549

Krisyuningsih Krisnandi Y, Arifa Nurani D, Reza M, et al. Partial Oxidation of Methane to Methanol on Cobalt Oxide-Modified Hierarchical ZSM-5. In: Biogas - Recent Advances and Integrated Approaches. IntechOpen; 2021. doi:10.5772/intechopen.86133

Servatan M, Ghadiri M, Yazdi MK, et al. Synthesis of Cost-Effective Hierarchical MFI-Type Mesoporous Zeolite: Introducing Diatomite as Silica Source. Silicon. Published online 2021. doi:10.1007/s12633-020-00786-7

Liu Y, Shen J, Lu Z, Shen B, Yan L. Powder x-ray diffraction and Rietveld analysis of (C2H5NH3)2CuCl4. Chinese Physics B. Published online 2021. doi:10.1088/1674-1056/abee0a

Nqakala L, Mohiuddin E, Mpungose P, Mdleleni M. Effective hierarchical ZSM-5 catalysts for the cracking of naphtha and waste tire-derived oil to light olefins. Biofuels, Bioproducts and Biorefining. Published online 2024. doi:10.1002/bbb.2608

Mohiuddin E, Mdleleni MM, Key D. Catalytic cracking of naphtha: The effect of Fe and Cr impregnated ZSM-5 on olefin selectivity. Appl Petrochem Res. 2018;8(2):119-129. doi:10.1007/s13203-018-0200-2

Rostamizadeh M, Sadatnia B, Norouzbahari S, Ghadimi A. Enhancing the gas separation properties of mixed matrix membranes via impregnation of sieve phases with metal and nonmetal promoters. Sep Purif Technol. Published online 2020. doi:10.1016/j.seppur.2020.116859

Bemis R, Heriyanti, Sari RDP, Pratiwi N, Putri LFA. Synthesis and Characterization of Hydroxyapatite-Ag Nanocomposites Using Areca Nut Peel Bioreductors (Areca catechu L.) for Antibacterial Applications. Jurnal Kimia Valensi. 2023;9(2):216-223. doi:10.15408/jkv.v9i2.32638

Sihombing JL, Herlinawati H, Pulungan AN, Simatupang L, Rahayu R, Wibowo AA. Effective hydrodeoxygenation bio-oil via natural zeolite supported transition metal oxide catalyst. Arabian Journal of Chemistry. 2023;16(50, 104707):1-14. doi:10.1016/j.arabjc.2023.104707

Mohamad Dzol MAA, Balasundram V, Shameli K, Ibrahim N, Manan ZA, Isha R. Catalytic pyrolysis of high-density polyethylene over nickel-waste chicken eggshell/HZSM-5. J Environ Manage. 2022;324. doi:10.1016/j.jenvman.2022.116392

Aziz I, Sugita P, Darmawan N, Dwiatmoko AA, Rustyawan W. Hydrodeoxygenation of palm fatty acid distillate (PFAD) over natural zeolite-supported nickel phosphide catalyst: Insight into Ni/P effect. Case Studies in Chemical and Environmental Engineering. 2024;9. doi:10.1016/j.cscee.2023.100571

Peron D V., Zholobenko VL, de Melo JHS, et al. External surface phenomena in dealumination and desilication of large single crystals of ZSM-5 zeolite synthesized from a sustainable source. Microporous and Mesoporous Materials. Published online 2019. doi:10.1016/j.micromeso.2019.05.033

Ismail A, Saputri LNMZ, Dwiatmoko AA, Susanto BH, Nasikin M. A facile approach to synthesis of silica nanoparticles from silica sand and their application as superhydrophobic material. Journal of Asian Ceramic Societies. 2021;9(2):665-672. doi:10.1080/21870764.2021.1911057

Sotomayor F, Quantatec AP, Thommes M, Sotomayor FJ, Cychosz KA. Characterization of Micro/Mesoporous Materials by Physisorption: Concepts and Case Studies. Vol 3.; 2018. https://www.researchgate.net/publication/331260891

Schlumberger C, Thommes M. Characterization of Hierarchically Ordered Porous Materials by Physisorption and Mercury Porosimetry—A Tutorial Review. Adv Mater Interfaces. 2021;8(4, 2002181):1-25. doi:10.1002/admi.202002181

Li L, Wang W, Huang J, et al. Synthesis of hydrophobic nanosized hierarchical titanosilicate-1 zeolites by an alkali-etching protocol and their enhanced performance in catalytic oxidative desulphurization of fuels. Appl Catal A Gen. 2022;630. doi:10.1016/j.apcata.2021.118466

Cieśla J, Franus W, Franus M, et al. Environmental-friendly modifications of zeolite to increase its sorption and anion exchange properties, physicochemical studies of the modified materials. Materials. 2019;12(19, 3213):1-13. doi:10.3390/ma12193213

Ejsmont A, Lewandowska-Andralojc A, Goscianska J. From Co-MOF to Co@carbon–comparison of needle-like catalysts in photo-driven hydrogen evolution. Int J Hydrogen Energy. 2024;67:704-714. doi:10.1016/j.ijhydene.2024.04.192

Visiamah F, Trisunaryanti W, Triyono. Microwave-assisted coconut wood carbon-based catalyst impregnated by Ni and/or Pt for bio-jet fuel range hydrocarbons production from Calophyllum inophyllum L. oil using modified-microwave reactor. Case Studies in Chemical and Environmental Engineering. 2024;9. doi:10.1016/j.cscee.2024.100722

Triyono. EFFECT OF IMPREGNATION PROCEDURE OF Pt/γ-Al 2 O 3 CATALYSTS UPON CATALYTIC OXIDATION OF CO. Vol 2.; 2002.

Susmanto P, Gusman Y, Ridwan MF, Tanara EH. CHARACTERIZATION OF Cr / SiO2 / AL2O3 CATALYST FROM RICE HUSK USING IMPREGNATION METHOD. IJCA (Indonesian Journal of Chemical Analysis). 2020;3(1). doi:10.20885/ijca.vol3.iss1.art5

Peréz-Ramírez J, Verboekend D, Bonilla A, Abelló S. Zeolite catalysts with tunable hierarchy factor by pore-growth moderators. Adv Funct Mater. 2009;19(24):3972-3979. doi:10.1002/adfm.200901394

Mjalli FS, Ahmed OU, Al-Wahaibi T, Al-Wahaibi Y, AlNashef IM. Deep oxidative desulfurization of liquid fuels. Reviews in Chemical Engineering. 2014;30(4):337-378. doi:10.1515/revce-2014-0001

Xu H, Niu A, Yang Z, et al. Preparation of cobalt-containing polyvinylimidazole ionic liquid catalyst and coupling with persulfate for room-temperature ultra-deep desulfurization. Fuel. 2023;334. doi:10.1016/j.fuel.2022.126762

Rajendran A, Fan HX, Cui TY, Feng J, Li WY. Octamolybdates containing MoV and MoVI sites supported on mesoporous tin oxide for oxidative desulfurization of liquid fuels. J Clean Prod. 2022;334. doi:10.1016/j.jclepro.2021.130199

Fang Z, Zhao Z, Li N, et al. Low-temperature catalytic oxidative desulfurization by two-phase system with O-bridged diiron perfluorophthalocyanine. Fuel. 2021;306(July):121649. doi:10.1016/j.fuel.2021.121649

Campos-Martin JM, Capel-Sanchez MC. Catalytic Oxidative Desulfurization of Liquid Fuels. In: ACS Symposium Series. Vol 1379. American Chemical Society; 2021:143-174. doi:10.1021/bk-2021-1379.ch006

Nikmanesh H, Jaberolansar E, Kameli P, Varzaneh AG, Mehrabi M, Rostami M. Structural and magnetic properties of CoFe2O4 ferrite nanoparticles doped by gadolinium. Nanotechnology. 2022;33(4):pp.13. doi:10.1088/1361-6528/ac31e8

Bhadra BN, Mondol MMH, Jhung SH. Metallic cobalt-anchored carbon with non-metallic heteroatom decoration: Remarkably effective oxidative desulfurization catalyst. Sep Purif Technol. 2024;330:125425. doi:10.1016/j.seppur.2023.125425

Hassanzadeh-Afruzi F. Turn over number (TON) and turn over frequency (TOF) studies for heterogeneous micro and nanocomposite catalysts. In: Heterogeneous Micro and Nanoscale Composites for the Catalysis of Organic Reactions. ; 2021. doi:10.1016/B978-0-12-824527-9.00004-6

Jangi F, Rahemi N, Allahyari S. Oxidative desulfurization using nanocomposites of heterogeneous phosphotungstic acid over natural zeolites; optimization by central-composite design. Pet Sci Technol. 2023;41(1):104-122. doi:10.1080/10916466.2022.2039703

Wang S, Patehebieke Y, Zhou Z, Zhang Z, Wang X. Catalyst-free biphasic oxidation of Thiophenes in continuous-flow. J Flow Chem. Published online 2020. doi:10.1007/s41981-020-00102-9

Wang C, Ying C, Tang Y, Yan Y, Feng X. Synergistic effect of Co(II) doping on FeS activating heterogeneous Fenton processes toward degradation of Rhodamine B. Chemical Engineering Journal Advances. 2020;4:100044. doi:10.1016/j.ceja.2020.100044

Betiha MA, Rabie AM, Ahmed HS, Abdelrahman AA, El-Shahat MF. Oxidative desulfurization using graphene and its composites for fuel containing thiophene and its derivatives: An update review. Egyptian Journal of Petroleum. Published online 2018. doi:10.1016/j.ejpe.2017.10.006

Sikarwar P, Gosu V, Subbaramaiah V. An overview of conventional and alternative technologies for the production of ultra-low-sulfur fuels. Reviews in Chemical Engineering. 2019;35:669-705. doi:10.1515/revce-2017-0082

Sikarwar P, Kumar UKA, Gosu V, Subbaramaiah V. Synergetic Effect of Cobalt-Incorporated Acid-Activated GAC for Adsorptive Desulfurization of DBT under Mild Conditions. J Chem Eng Data. 2018;63(8):2975-2985. doi:10.1021/acs.jced.8b00249

Rajakovich LJ, Zhang B, McBride MJ, Boal AK, Krebs C, Bollinger JM. Emerging structural and functional diversity in proteins with dioxygen-reactive dinuclear transition metal cofactors. In: Comprehensive Natural Products III. ; 2020. doi:10.1016/B978-0-12-409547-2.14864-4

Ouyang H, Zhang L, Jiang S, Wang W, Zhu C, Fu Z. Co Single-Atom Catalysts Boost Chemiluminescence. Chemistry - A European Journal.2020;26(34).doi:10.1002/chem.202002330


Full Text: PDF

DOI: 10.15408/jkv.v10i1.38456

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 lisa adhani

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.