Amino Acids Isolation from α-keratin of Javanese Goat (Capra hircus) Hair and Garut Sheep (Ovis aries) Hair Waste Using Acid Hydrolysis Method as BCAA Supplement

Dzikri Anfasa Firdaus, Dimas Andrianto, Noviyan Darmawan

Abstract


Javanese goat and Garut sheep hair contain α-keratin, a protein that can be broken by hydrolysis to produce simpler amino acids. Feather waste generates millions of tons of α-keratin biomass originating from animal slaughterhouses, thereby raising health concerns. The utilization of acid hydrolysis is considered to be more cost-effective compared to enzymatic hydrolysis, and it provides a broader range of amino acid cleavage sites compared to enzymes, which exhibit specific cleavage. This study aimed to isolate amino acids from Javanese goat and Garut sheep hair through acid hydrolysis. The methods included hair sample preparation, acid hydrolysis used 6 M HCL at 110°C, reflux isolation, amino acid separation based on isoelectric pH 4.9 –5.4, functional groups analysis using FTIR, and analysis of amino acid content by HPLC methods. The results showed that the yield produced after isolation on Javanese goat hair samples was 0.92% and Garut sheep hair 0.32%, respectively. The FTIR spectrum showed amino acid functional groups in both samples, including carboxyl (COOH), amine (C-N primer), (C-S disulfide), and amide I (-CONH2). Successful breakdown of α-keratin proteins into simpler amino acids was achieved for Javanese goat and Garut sheep hair. Amino acid analysis of Javanese goat hair isolates revealed the presence of aspartic acid, threonine, serine, glutamate, proline, glycine, alanine, valine, methionine, isoleucine, leucine, tyrosine, phenylalanine, histidine, lysine, and arginine amino acids, respectively. The highest content was isoleucine at 0.60% w/w. In conclusion, the isolated amino acids from Javanese goat hair can be used as a halal supplement that serves as nutrition in the body.


Keywords


Javanese goat; Garut sheep; α-keratin; amino acid

References


Athwal S, Sharma S, Gupta S, Nadda AK, Gupta A, Husain MSB. Sustainable Biodegradation and Extraction of Keratin with Its Applications. In: Thomas S, AR A, Jose Chirayil C, Thomas B, eds. Handbook of Biopolymers. Springer Nature Singapore; 2023:713-747. doi:10.1007/978-981-19-0710-4_27

Zhang Y, Yang R, Zhao W. Improving Digestibility of Feather Meal by Steam Flash Explosion. J Agric Food Chem. 2014;62(13):2745-2751. doi:10.1021/jf405498k

Tubiello FN, Salvatore M, Rossi S, Ferrara A, Fitton N, Smith P. The FAOSTAT database of greenhouse gas emissions from agriculture. Environmental Research Letters. 2013;8(1). doi:10.1088/1748-9326/8/1/015009

Jin E, Reddy N, Zhu Z, Yang Y. Graft Polymerization of Native Chicken Feathers for Thermoplastic Applications. J Agric Food Chem. 2011;59(5):1729-1738. doi:10.1021/jf1039519

Dou Y, Huang X, Zhang B, He M, Yin G, Cui Y. Preparation and characterization of a dialdehyde starch crosslinked feather keratin film for food packaging application. RSC Adv. 2015;5(34):27168-27174. doi:10.1039/c4ra15469j

Rahmawati D, Griyanitasari G. Production of Keratin Hydrolyzate from Sheep Hair, Tannery Industry Waste Using a Combination of Bases and Enzymes. IPTEK Journal of Proceedings Series. 2019;4:32-35. doi:10.12962/j23546026.y2019i4.6118

Pourjavaheri F, Ostovar Pour S, Jones OAH, et al. Extraction of keratin from waste chicken feathers using sodium sulfide and L-cysteine. Process Biochemistry. 2019;82:205-214. doi:10.1016/j.procbio.2019.04.010

Mengistu A, Angassa K, Tessema I. Optimization of Keratin Hydrolysate Extraction from Tannery Sheep Hair Waste. International Journal of Chemical Engineering. 2023;2023. doi:10.1155/2023/9293505

Staroń P, Banach M, Kowalski Z, Staroń A, Materiałów H. Hydrolysis of Kertin Materials Derived from Poultry Industry. 2014;8(2):50. doi:10.2429/proc.2014.8(2)050

Said MI, Yuliati FN, Sukma M. The Effects of Acidic and Alkaline Hydrolysis Process on some Physical and Chemical Properties of Broiler Chicken Feathers. ranian Journal of Applied Animal Science. 2019;9(3):529-540. www.ijas.ir

Prayitno P, Rahmawati D, Griyanitasari G. Sheep wool-derived hydrolyzed keratin from tannery waste of the tanning industry using perhydrol. Majalah Kulit, Karet, dan Plastik. 2017;33(2):73. doi:10.20543/mkkp.v33i2.3336

Nie C, He T, Zhang W, Zhang G, Ma X. Branched chain amino acids: Beyond nutrition metabolism. Int J Mol Sci. 2018;19(4). doi:10.3390/ijms19040954

Yoon MS. The emerging role of branched-chain amino acids in insulin resistance and metabolism. Nutrients. 2016;8(7). doi:10.3390/nu8070405

Grand View Research. Amino Acids Market Size. Grand View Research; 2023.

State of the Global Islamic Economy Report. State of the Global Islamic Economy Report Thriving in Uncertainty. dinarstandard; 2020.

Memon H, Wang H, Langat EK. Determination and characterization of the wool fiber yield of Kenyan sheep breeds: An economically sustainable practical approach for Kenya. Fibers. 2018;6(3). doi:10.3390/fib6030055

Zharif M, Zharif ZM, Nur Azira T, Shirwan ASM. Characterization Of L-Cysteine Sources Using ATR-FTIR and Raman Spectroscopy. 2021;1(1):83-95.

Warastuti RA, Yuniar V, Paute J, Masyita S, Jailani D, Mandiri B. Test The Content Of Globulin, Biuret And Hemoglobin In Blood In Adolescent Women. Journal of Health, Technology and Science (JHTS). 2021;2(2):51-59. Accessed December 20, 2023. https://doi.org/10.47918/jhts.v2i1.213

Dobson CM, Winter NS. The Identification of Amino Acids by Interpretation of Titration Curves: An Undergraduate Experiment for Biochemistry. World Journal of Chemical Education. 2014;2(4):59-61. doi:10.12691/wjce-2-4-3

Riad S, Chriswahyudi, Roswandi I, Eka Kurnia T, Rahmi IF. Analysis of the Effect of Polydon Addition Using ANOVA and the Difference in Polydon Supplier Quality Using the T-Test at PT X. Jurnal Teknologi Universitas Muhammadiyah Jakarta. 2021;13(2):179-192. doi:10.24853/jurtek.13.2.179-192

Nurillahl AS, Toar GA, Pudjiastuti L. The Effect of Time and Temperature on the Extraction of Chicken Feather Keratin as Filler Raw Material in Making Edible Film Based on Cassava Starch. J Teknol. 2023;11(1):67-77. doi:10.31479/jtek.v11i1.279

Park SY, Kim HL, Her JY. Isolation of microcrystalline cellulose (MCC) from pistachio shells and preparation of carrageenan-based composite films. Carbohydrate Polymer Technologies and Applications. 2024;7. doi:10.1016/j.carpta.2024.100423

Sari DAP, Putra PH, Arum WF, et al. Standardization of solid organic fertilizer from pupae and fly of black soldier fly (BSF) to support zero waste and circular economy. Published online 2024:020007. doi:10.1063/5.0200990

AOAC Association of Official Analytical Chemist. Association of Analytical Chemists. Vol 1. 19th ed. AOAC International; 2012.

Mulia S, Tri Yuliningsih D, Risna Maryanto, Cahyono Purbomartono. Utilization of Waste Chicken Feather to Fish Feed Ingredients Material with Fermentation of Bacillus subtilis. Mareturnal Manusia dan lingkungan. 2016;23(1):49-57. Accessed December 20, 2023. https://doi.org/10.22146/jml.18773

Shavandi A, Silva TH, Bekhit AA, Bekhit AEDA. Keratin: Dissolution, extraction and biomedical application. Biomater Sci. 2017;5(9):1699-1735. doi:10.1039/c7bm00411g

Gahatraj I, Borah A, Pandey P, Bhattacharya A. Current Progress and Biotechnological Applications of Microbial Keratinases. J Pure Appl Microbiol. 2023;17(2).

Perța-Crișan S, Ursachi C Ștefan, Gavrilaș S, Oancea F, Munteanu FD. Closing the loop with keratin-rich fibrous materials. Polymers (Basel). 2021;13(11):189. doi:10.3390/polym13111896

Chaitanya Reddy C, Khilji IA, Gupta A, et al. Valorization of keratin waste biomass and its potential applications. Journal of Water Process Engineering. 2021;40:101707. doi:https://doi.org/10.1016/j.jwpe.2020.101707

Rajabinejad H, Zoccola M, Patrucco A, Montarsolo A, Rovero G, Tonin C. Physicochemical properties of keratin extracted from wool by various methods. Textile Research Journal. 2017;88(21):2415-2424. doi:10.1177/0040517517723028

Tshela N, Yves H, Prochoń M. The effect of modified keratin on the thermal properties of a cellulosic–elastomeric material. J Therm Anal Calorim. 2016;125(3):1151-1160. doi:10.1007/s10973-016-5590-8

Suardi S, Bahri S, Khairuddin, Sumarni NK, Rahim EA. Comparative Analysis of Albumin Content in Snakehead Fish (Channa striata) after Boiling and Steaming using the Biuret Test. KOVALEN: Jurnal Riset Kimia. 2020;6(1):67-73. doi:10.22487/kovalen.2020.v6.i1.12699

Fertiasari R, Jailani J, Sindi S, et al. Uji Protein pada Produk Tempe dengan Metode Spektrifotometri UV-Vis. Journal of Food Security and Agroindustry. 2024;2(1):27-32. doi:10.58184/jfsa.v2i1.286

Alsaleem KA, Hammam ARA, Metzger LE. Decolorization of Lactose-6-Phosphate Solutions Using Activated Carbon. Processes. 2023;11(12). doi:10.3390/pr11123357

Fagbemi OD, Sithole B, Tesfaye T. Optimization of keratin protein extraction from waste chicken feathers using hybrid pre-treatment techniques. Sustain Chem Pharm. 2020;17:100267. doi:https://doi.org/10.1016/j.scp.2020.100267

Mengistu A, Angassa K, Tessema I. Optimization of Keratin Hydrolysate Extraction from Tannery Sheep Hair Waste. International Journal of Chemical Engineering. 2023;2023:1-18. doi:10.1155/2023/9293505

Prayitno P, Rahmawati D, Griyanitasari G. Sheep wool-derived hydrolyzed keratin from tannery waste of the tanning industry using perhydrol. Majalah Kulit, Karet, dan Plastik. 2017;33(2):73. doi:10.20543/mkkp.v33i2.3336

Ghosh A, Clerens S, Deb-Choudhury S, Dyer JM. Thermal effects of ionic liquid dissolution on the structures and properties of regenerated wool keratin. Polym Degrad Stab. 2014;108:108-115. doi:https://doi.org/10.1016/j.polymdegradstab.2014.06.007

Xie H, Li S, Zhang S. Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers. Green Chemistry. 2005;7(8):606-608. doi:10.1039/b502547h

Nurillahl AS, Toar GA, Pudjiastuti L. Effect of Time and Temperature on Chicken Feather Keratin Extraction as a Filler Material for Biodegradable Film ProductionPati Singkong. J Teknol. 2023;11(1):67-77. doi:10.31479/jtek.v11i1.279

Wu G. Amino Acids: Biochemistry and Nutrition (2nd Ed.). CRC Press; 2021. doi:10.1201/9781003092742

Muhammad A, Durrani Y, Hashmi MS, Qazi IM, Ayub M, Saifullah. Whey neutralization with different concentration of sodium hydroxide and sodium bicarbonate. Sarhad Journal of Agriculture. 2018;34(4):910-916. doi:10.17582/journal.sja/2018/34.4.910.916

Thangakani JA, Rajendran S, Sathiabama J, Rathish RJ, Santhanaprabha S. Corrosion inhibition of carbon steel in well water by L-cysteine-Zn2+ system. Portugaliae Electrochimica Acta. 2017;35(1):13-25. doi:10.4152/pea.201701013

Nandiyanto ABD, Oktiani R, Ragadhita R. How to read and interpret ftir spectroscope of organic material. Indonesian Journal of Science and Technology. 2019;4(1):97-118. doi:10.17509/ijost.v4i1.15806

Rombouts I, Lambrecht MA, Carpentier SC, Delcour JA. Identification of lanthionine and lysinoalanine in heat-treated wheat gliadin and bovine serum albumin using tandem mass spectrometry with higher-energy collisional dissociation. Amino Acids. 2016;48(4):959-971. doi:doi:10.1007/s00726-015-


Full Text: PDF

DOI: 10.15408/jkv.v10i1.38146

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Dimas Andrianto

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.