Modified Bacterial Cellulose-Based Composite Profile for Drug Release of Tetracycline Hydrochloride

Ni Wayan Chyntia Pramesti Cahyani, Emmy Yuanita, Ni Komang Tri Dharmayani, Sudirman Sudirman, Ni Made Sudewianingsih, Maria Ulfa

Abstract


Bacterial cellulose (BC) is a biodegradable natural polymer with high mechanical strength and non-toxicity. This biopolymer is widely used as a candidate in biomedical fields, such as drug delivery, wound healing, and filtration systems. However, BC lacks antibacterial activity which limits its use in biomedical applications. So, modification of BC-based composite is required. This study aims to examine the effects of modifying BC-based composites with fillers such as graphite (G) and polyvinyl alcohol (PVA) on the release of tetracycline hydrochloride (TCH) drugs. Adding fillers to BC can alter its physical and mechanical properties, reducing its porosity and swelling rate in acidic and alkaline mediums. The drug release of TCH from modified BC-based composites follows the Korsmeyer-Peppas and Hixson-Crowell kinetics models. Adding filler and TCH antibiotic to the composite enhances its antibacterial activity against Staphylococcus aureus with a significant inhibition zone. The results of the inhibition zone show that composites have the potential to be applied in biomedical fields, especially in transdermal patches.

Keywords


Bacterial cellulose; graphite; drug release; polyvinyl alcohol; tetracycline hydrochloride

References


Sharma K, Porat Z, Gedanken A. Designing natural polymer-based capsules and spheres for biomedical applications—A review. Polymers (Basel). 2021;13(24):1-41. doi:10.3390/polym13244307

Li X, Liu Y, Yu Y, Chen W, Liu Y, Yu H. Nanoformulations of quercetin and cellulose nanofibers as healthcare supplements with sustained antioxidant activity. Carbohydr Polym. 2019;207:160-168. doi:10.1016/j.carbpol.2018.11.084

Adepu S, Ramakrishna S. Controlled drug delivery systems: current status and future directions. Molecules. 2021;26(19):1-45. doi:doi: 10.3390/molecules26195905

Srivastava N, Richa, Roy Choudhury A. Recent advances in composite hydrogels prepared solely from polysaccharides. Colloids Surf B Biointerfaces. 2021;205:1-15. doi:10.1016/j.colsurfb.2021.111891

Stumpf TR, Yang X, Zhang J, Cao X. In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. Materials Science and Engineering C. 2018;82:372-383. doi:10.1016/j.msec.2016.11.121

Zheng L, Li S, Luo J, Wang X. Latest advances on bacterial cellulose-based antibacterial materials as wound dressings. Front Bioeng Biotechnol. 2020;8:1-15. doi:10.3389/fbioe.2020.593768

Aritonang HF, Wulandari R, Wuntu AD. Synthesis and characterization of bacterial cellulose/nano-graphite nanocomposite membranes. Macromol Symp. 2020;391(1):1-7. doi:10.1002/masy.201900145

Liauw CM, Vaidya M, Slate AJ, et al. Analysis of cellular damage resulting from exposure of bacteria to graphene oxide and hybrids using fourier transform infrared spectroscopy. Antibiotics. 2023;12(4):1-20. doi:10.3390/antibiotics12040776

Silva M, Alves NM, Paiva MC. Graphene-polymer nanocomposites for biomedical applications. Polym Adv Technol. 2018;29(2):687-700. doi:10.1002/pat.4164

Song S, Liu Z, Abubaker MA, et al. Antibacterial polyvinyl alcohol/bacterial cellulose/nano-silver hydrogels that effectively promote wound healing. Materials Science and Engineering C. 2021;126:1-13. doi:10.1016/j.msec.2021.112171

Tai MH, Mohan BC, Yao Z, Wang CH. Superhydrophobic leached carbon black/poly(vinyl) alcohol aerogel for selective removal of oils and organic compounds from water. Chemosphere. 2022;286:1-10. doi:10.1016/j.chemosphere.2021.131520

Al-Arjan WS, Khan MUA, Almutairi HH, Alharbi SM, Razak SIA. pH-Responsive PVA/BC-f-GO dressing materials for burn and chronic wound healing with curcumin release kinetics. Polymers (Basel). 2022;14(10):1-16. doi:10.3390/polym14101949

Tan BK, Ching YC, Poh SC, Abdullah LC, Gan SN. A review of natural fiber reinforced poly(vinyl alcohol) based composites: Application and opportunity. Polymers (Basel). 2015;7(11):2205-2222. doi:10.3390/polym7111509

Shao W, Liu H, Wang S, et al. Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes. Carbohydr Polym. 2016;145:114-120. doi:10.1016/j.carbpol.2016.02.065

Iftime MM, Dobreci DL, Irimiciuc SA, Agop M, Petrescu T, Doroftei B. A theoretical mathematical model for assessing diclofenac release from chitosan-based formulations. Drug Deliv. 2020;27(1):1125-1133. doi:10.1080/10717544.2020.1797242

Syamsu K, Kuryani DT. Pembuatan Biofilm Selulosa Asetat dari Selulosa Mikrobial Nata De Cassava. Jurnal Agroindustri Indonesia . 2014;3(1):126-133. http://tin.fateta.ipb.ac.id/journal/e-jaii

Sari TI, Hadiah F, Bahrin D, Putri TJ, Amanda R. Pengaruh konsentrasi inisiator kalium persulfat dan monomer asam akrilat terhadap persen grafting karet alam/starch. Jurnal Teknik Kimia. 2023;29(1):9-18. doi:10.36706/jtk.v29i1.1450

Galdino CJS, Maia AD, Meira HM, et al. Use of a bacterial cellulose filter for the removal of oil from wastewater. Process Biochemistry. 2020;91:288-296. doi:10.1016/j.procbio.2019.12.020

Xu K, Qin Y, Xu T, et al. Combining polymeric membranes with inorganic woven fabric: Towards the continuous and affordable fabrication of a multifunctional separator for lithium-ion battery. J Memb Sci. 2019;592:1-9. doi:10.1016/j.memsci.2019.117364

Dewi R, Sylvia N, Riza M. Characterization of Degradable Plastics from Sago and Breadfruit Starch-Based with Addition of Zinc Oxide (ZnO) Catalyst and Polyvinyl Alcohol (PVA). Jurnal Kimia Sains dan Aplikasi. 2023;26(11):427-436. doi:10.14710/jksa.26.11.427-436

Arikibe JE, Lata R, Rohindra D. Bacterial Cellulose/Chitosan Hydrogels Synthesized In situ for Biomedical Application. J Appl Biosci. 2021;162:16675-16693. doi:10.35759/jabs.162.1

Susilo BD, Suryanto H, Aminnudin A. Characterization of bacterial nanocellulose - graphite nanoplatelets composite films. Journal of Mechanical Engineering Science and Technology. 2021;5(2):145. doi:10.17977/um016v5i22021p145

Sharma D, Kumari M, Dhayal V. Fabrication and characterization of cellulose/pva/tio2 nanocomposite thin film as a photocatalyst. Mater Today Proc. 2021;43:2970-2974. doi:10.1016/j.matpr.2021.01.323

Arfi R Ben, Karoui S, Mougin K, Ghorbal A. Cetyltrimethylammonium bromide-treated Phragmites australis powder as novel polymeric adsorbent for hazardous Eriochrome Black T removal from aqueous solutions. Polymer Bulletin. 2019;76(10):5077-5102. doi:10.1007/s00289-018-2648-8

Fuller ME, Andaya C, McClay K. Evaluation of ATR-FTIR for analysis of bacterial cellulose impurities. J Microbiol Methods. 2018;144:145-151. doi:10.1016/j.mimet.2017.10.017

Khalid A, Ullah H, Ul-Islam M, et al. Bacterial cellulose-TiO2 nanocomposites promote healing and tissue regeneration in burn mice model. RSC Adv. 2017;7(75):47662-47668. doi:10.1039/c7ra06699f

Ulfa M, Noviani I, Yuanita E, Dharmayani NKT, Sudirman, Sarkono. Synthesis and Characterization of Composites-Based Bacterial Cellulose by Ex-Situ Method as Separator Battery. Jurnal Penelitian Pendidikan IPA. 2023;9(6):4647-4651. doi:10.29303/jppipa.v9i6.3819

Vo TV, Dang TH, Chen BH. Synthesis of intelligent pH indicative films from chitosan/poly(vinyl alcohol)/anthocyanin extracted from red cabbage. Polymers (Basel). 2019;11(7). doi:10.3390/polym11071088

Nuryati, Amalia RR, Hairiyah N, et al. Pembuatan komposit dari limbah plastik polyethylene terephthalate (PET) berbasis serat alam daun pandan laut (Pandanus tectorius). Agroindustri. 2020;10(2):107-117. doi:10.31186/j.agroind.10.2.107-117

Tanpichai S, Witayakran S, Srimarut Y, Woraprayote W, Malila Y. Porosity, density and mechanical properties of the paper of steam exploded bamboo microfibers controlled by nanofibrillated cellulose. Journal of Materials Research and Technology. 2019;8(4):3612-3622. doi:10.1016/j.jmrt.2019.05.024

Rizwan M, Yahya R, Hassan A, et al. pH sensitive hydrogels in drug delivery: brief history, properties, swelling, and release mechanism, material selection and applications. Polymers (Basel). 2017;9(4):1-37. doi:10.3390/polym9040137

Rohaeti E, LFX EW, Rakhmawati A. Kemudahan Biodegradasi Selulosa Bakteri dari Limbah Cucian Beras dengan Penambahan Gliserol, Kitosan, dan Nanopartikel Perak. Jurnal Kimia Valensi. 2016;2(1):45-54. doi:10.15408/jkv.v2i1.3111

Ananda MB. Mesoporous Silica Nanoparticles Sebagai Drug Carrier pada Aplikasi Controlled Drug Delivery System. Jurnal Perancangan, Manufaktur, Material, dan Energi (Jurnal Permadi). 2020;2(3):102-109. doi:10.52005/permadi.v2i3.39

Jantarat C, Muenraya P, Srivaro S, Nawakitrangsan A, Promsornpason K. Comparison of drug release behavior of bacterial cellulose loaded with ibuprofen and propranolol hydrochloride. RSC Adv. 2021;11(59):37354-37365. doi:10.1039/d1ra07761a

Paarakh MP, Jose PA, Setty C, Christoper GVP. RELEASE KINETICS-CONCEPTS AND APPLICATIONS.; 2018. https://www.researchgate.net/publication/369038187

Bayer IS. Controlled drug release from nanoengineered polysaccharides. Pharmaceutics. 2023;15(5):1-43. doi:10.3390/pharmaceutics15051364

Hajeeassa KS, Hussein MA, Anwar Y, Tashkandi NY, Al-Amshany ZM. Nanocomposites containing polyvinyl alcohol and reinforced carbon-based nanofiller: A super effective biologically active material. Nanobiomedicine (Rij). 2018;5:1-12. doi:10.1177/1849543518794818


Full Text: PDF

DOI: 10.15408/jkv.v10i1.37663

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Ni Wayan Chyntia Pramesti Cahyani Pramesti Cahyan, Emmy Yuanita, Ni Komang Tri Dharmayani, Sudirman Sudirman, Ni Made Sudewianingsih, Maria Ulfa

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.