Hybrid CaO/ZnFe2O4 Modified with Al2O3 as a Green Catalyst for Biodiesel Production from Waste Cooking Oil

Jenia Villa Hapsari, Helmiyati Helmiyati, Yuni K. Krisnandi

Abstract


In this work, biodiesel was produced from waste cooking oil (WCO) via a green catalyst of CaO-ZnFe2O4 modified Al2O3. The catalyst was characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray (EDX), SEM-mapping, Brunauer-Emmett-Teller (BET), transmission electron microscopy (TEM) analyses. The catalyst performance was studied in the transesterification reaction of WCO conversion to biodiesel. The catalytic activity increased with the combination of nanoparticles effect and support catalysts obtained biodiesel yield of nano-Al2O3, nano-CaO, ZnFe2O4, CaO-ZnFe2O4, and CaO-ZnFe2O4/Al2O3 is 36.86%, 67.16%, 74.83%, 86.54%, and 93.41%, respectively. The best biodiesel yield was 93.41% with a mass ratio of Al2O3 to CaO-ZnFe2O4 (2:1). The physicochemical properties (acid number, density, kinematic viscosity, flash point, and cetane number) of biodiesel under the optimal conditions agreed with the ASTM standard. These results show that the developed nanocomposite has great potential to reduce biodiesel production costs because derived from WCO. In conclusion, CaO-ZnFe2O4 modified Al2O3 as a catalyst has a high potential for biodiesel production on a large scale.


Keywords


Biodiesel; catalyst; nanocomposite; transesterification; waste cooking oil

References


Dey S, Reang NM, Das PK, Deb M. A comprehensive study on prospects of economy, environment, and efficiency of palm oil biodiesel as a renewable fuel. J Clean Prod. 2021;286. doi:10.1016/j.jclepro.2020.124981

Basahel SN, Ali TT, Mokhtar M, Narasimharao K. Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange. Nanoscale Res Lett. 2015;10(1). doi:10.1186/s11671-015-0780-z

Helmiyati H, Budiman Y, Abbas GH, Dini FW, Khalil M. Highly efficient synthesis of biodiesel catalyzed by a cellulose@hematite-zirconia nanocomposite. Heliyon. 2021;7(3). doi:10.1016/j.heliyon.2021.e06622

Sandouqa A, Al-hamamre Z. Economical evaluation of jojoba cultivation for biodiesel production in Jordan. Renew Energy. 2021;177:1116-1132. doi:10.1016/j.renene.2021.06.025

Helmiyati, Anggraini Y. Nanocomposites comprising cellulose and nanomagnetite as heterogeneous catalysts for the synthesis of biodiesel from oleic acid. Int J Technol. 2019;10(4):798-807. doi:10.14716/ijtech.v10i4.2597

Chen Q, Wang A, Quan W, Gong W. Efficient synthesis of biodiesel from Hyoscyamus niger L . seed oil by base catalysis. Fuel Process Technol. 2023;241(December 2022):107630. doi:10.1016/j.fuproc.2022.107630

Ferreira GF, Fregolente LV. Sustainable catalysts for biodiesel production : The potential of CaO supported on sugarcane bagasse biochar. Renew Sustain Energy Rev. 2024;189(May 2023):114042. doi:doi.org/10.1016/j.rser.2023.114042

Al-saadi A, Mathan B, He Y. Chemical Engineering Research and Design Biodiesel production via simultaneous transesterification and esterification reactions over SrO – ZnO / Al 2 O 3 as a bifunctional catalyst using high acidic waste cooking oil. Chem Eng Res Des. 2020;162(2018):238-248. doi:10.1016/j.cherd.2020.08.018

Munyentwali A, Li H, Yang Q. Applied Catalysis A , General Review of advances in bifunctional solid acid / base catalysts for sustainable biodiesel production. 2022;633(November 2021). doi:10.1016/j.apcata.2022.118525

Dini FW, Helmiyati H, Krisnandi YK. Cellulose and TiO2–ZrO2 nanocomposite as a catalyst for glucose conversion to 5-EMF. Bull Chem React Eng Catal. 2021;16(2):320-330. doi:10.9767/bcrec.16.2.10320.320-330

Maafa IM, Sayed AA, El-magied MOA, Cui X, Dhmees AS. Eco-friendly self-terminated process for preparation of CaO catalyst based on chitosan production wastes for biodiesel production. J Mater Res Technol. 2024;30(January):1217-1227. doi:doi.org/10.1016/j.jmrt.2024.03.091

Erchamo YS, Mamo TT, Workneh GA. Improved biodiesel production from waste cooking oil with mixed methanol – ethanol using enhanced eggshell ‑ derived CaO nano ‑ catalyst. Sci Rep. Published online 2021:1-12. doi:10.1038/s41598-021-86062-z

Marinkovi M, Waisi H, Blagojevi S, Zarubica A. The effect of process parameters and catalyst support preparation methods on the catalytic efficiency in transesterification of sunflower oil over heterogeneous KI / Al 2 O 3 -based catalysts for biodiesel production. 2022;315(November 2021). doi:10.1016/j.fuel.2022.123246

Sudana IW, Helmiyati, Yunarti RT. Alginate-CMC/Fe 3 O 4 -CaO nanocomposite as a catalyst for synthesis of biodiesel from waste cooking oil. IOP Conf Ser Earth Environ Sci. 2021;846(1):012008. doi:10.1088/1755-1315/846/1/012008

Karami S, Zeynizadeh B. Reduction of 4-nitrophenol by a disused adsorbent: EDA-functionalized magnetic cellulose nanocomposite after the removal of Cu 2+. Carbohydr Polym. 2019;211(August 2018):298-307. doi:10.1016/j.carbpol.2019.01.113

Tamjidi S, Kamyab B, Esmaeili H. Ultrasound-assisted biodiesel generation from waste edible oil using CoFe 2 O 4 @ GO as a superior and reclaimable nanocatalyst : Optimization of two-step transesterification by RSM. Fuel. 2022;327(June):125170. doi:doi.org/10.1016/j.fuel.2022.125170

Tabesh F, Mallakpour S, Mustansar C. Recent advances in magnetic semiconductor ZnFe 2 O 4 nanoceramics : History , properties , synthesis , characterization , and applications. J Solid State Chem. 2023;322(February). doi:doi.org/10.1016/j.jssc.2023.123940

Abu-ghazala AH, Abdelhady HH, Mazhar AA, El- MS. Enhanced low-temperature production of biodiesel from waste cooking oil : aluminum industrial waste as a precursor of efficient CaO / Al 2 O 3. Fuel. 2023;351(January):128897. doi:doi.org/10.1016/j.fuel.2023.128897

Kesserwan F, Ahmad MN, Khalil M, El-rassy H. Hybrid CaO / Al 2 O 3 aerogel as heterogeneous catalyst for biodiesel production. Chem Eng J. 2020;385(December 2019):123834. doi:doi.org/10.1016/j.cej.2019.123834

Mawlid OA, Abdelhady HH, El-Deab MS. Boosted biodiesel production from waste cooking oil using novel SrO/MgFe2O4 magnetic nanocatalyst at low temperature: Optimization process. Energy Convers Manag. 2022;273(October). doi:10.1016/j.enconman.2022.116435

Torkzaban S, Feyzi M. A novel robust CaO / ZnFe 2 O 4 hollow magnetic microspheres heterogenous catalyst for synthesis biodiesel from waste frying sunflower oil. Renew Energy. 2022;200(October):996-1007. doi:10.1016/j.renene.2022.09.077

Chanthon N, Munbupphachart N, Ngaosuwan K, Kiatkittipong W, Wongsawaeng D, Mens W. Metal loading on CaO / Al 2 O 3 pellet catalyst as a booster for transesterification in biodiesel production. Renew Energy. 2023;218(May):119336. doi:doi.org/10.1016/j.renene.2023.119336

Yang X, Liu W, Zhao R, Raise A. Industrial Crops & Products Enhanced conversion of non-edible Jatropha oil to biodiesel utilizing highly reusable Mg decorated CoFe 2 O 4 nanocatalyst : Optimization by RSM. Ind Crop Prod. 2023;204(PB):117319. doi:10.1016/j.indcrop.2023.117319

Abdulnabi A, Al-iessa H, Abdollahi A, Soleimanimehr H. Investigating the atomic and thermal performance of soy biodiesel methyl ester in the presence of hybrid CuO / Al 2 O 3 nanoparticles by molecular dynamics simulation. Eng Anal Bound Elem. 2023;151(February):8-18. doi:doi.org/10.1016/j.enganabound.2023.02.038

El-sherif AA, Hamad AM, Shams-eldin E, et al. Power of recycling waste cooking oil into biodiesel via green CaO-based eggshells / Ag heterogeneous nanocatalyst. Renew Energy. 2023;202(December 2022):1412-1423. doi:doi.org/10.1016/j.renene.2022.12.041

Ali S. Synthesis of g-alumina (Al2O3) nanoparticles and their potential for use as an adsorbent in the removal of methylene blue dye from industrial wastewater. Nanoscale Adv. 2019;(1):213-218. doi:10.1039/c8na00014j

Zhang Y, Niu S, Han K, Li Y, Lu C. Synthesis of the SrO e CaO e Al 2 O 3 trimetallic oxide catalyst for transesteri fi cation to produce biodiesel. Renew Energy. 2021;168:981e990. doi:doi.org/10.1016/j.renene.2020.12.132

Liu Y, Yang X, Zhu Z. Economic evaluation and production process simulation of biodiesel production from waste cooking oil. Curr Res Green Sustain Chem. Published online 2021:100091. doi:10.1016/j.crgsc.2021.100091

Collins E, Wang Z, Yu Y, Callistus U, Duan P, Kapusta K. Industrial Crops & Products Yield optimization and fuel properties evaluation of the biodiesel derived from avocado pear waste. Ind Crop Prod. 2023;191(PA):115884. doi:10.1016/j.indcrop.2022.115884

Harsha Hebbar HR, Math MC, Yatish K V. Optimization and kinetic study of CaO nano-particles catalyzed biodiesel production from Bombax ceiba oil. Energy. 2018;143:25-34. doi:10.1016/j.energy.2017.10.118

Ajala EO, Ajala MA, Odetoye TE, Aderibigbe FA. Thermal modification of chicken eggshell as heterogeneous catalyst for palm kernel biodiesel production in an optimization process. Biomass Convers Biorefinery. 2020;11:2599-2615. doi:doi.org/10.1007/s13399-020-00636-x

Helmiyati H, Masriah I. Preparation of cellulose/CaO-Fe2O3 nanocomposites as catalyst for fatty acid methyl ester production. In: AIP Conference Proceedings. Vol 2168. American Institute of Physics Inc.; 2019. doi:10.1063/1.5132489

Farahmandjou M, Khodadadi A, Yaghoubi M. Low Concentration Iron-Doped Alumina ( Fe / Al 2 O 3 ) Nanoparticles Using Co-Precipitation Method. J Supercond Nov Magn. 2020;33:3425–3432. doi:doi.org/10.1007/s10948-020-05569-0

Hossain S, Ahmed S. Easy and green synthesis of TiO2 (Anatase and Rutile): Estimation of crystallite size using Scherrer equation , Williamson-Hall plot , Monshi-Scherrer Model , size-strain plot, Halder- Wagner Model. Results Mater. 2023;20(November):100492. doi:/doi.org/10.1016/j.rinma.2023.100492

Khatibi M, Khorasheh F, Larimi A. Biodiesel production via transesteri fi cation of canola oil in the presence of Na e K doped CaO derived from calcined eggshell. Renew Energy. 2021;163:1626-1636. doi:10.1016/j.renene.2020.10.039

Helmi F, Helmi M, Hemmati A. Phosphomolybdic acid/chitosan as acid solid catalyst using for biodiesel production from pomegranate seed oil via microwave heating system: RSM optimization and kinetic study. Renew Energy. 2022;189:881-898. doi:10.1016/j.renene.2022.02.123

Bukkarapu KR, Krishnasamy A. A critical review on available models to predict engine fuel properties of biodiesel. Renew Sustain Energy Rev. 2022;155(November 2021):111925. doi:doi.org/10.1016/j.rser.2021.111925


Full Text: PDF

DOI: 10.15408/jkv.v10i1.36594

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jenia Villa Hapsari

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.