Green Metrics Evaluation on The Cannizzaro Reaction of p-Anisaldehyde and Benzaldehyde Under Solvent-Free Conditions

Maulidan Firdaus, Nisrina Rahma Firdausi, Desy Nila Rahmana, Triana Kusumaningsih

Abstract


In the pursuit of environmentally responsible chemical processes, we conducted a thorough assessment of the green metrics associated with the Cannizzaro reaction using p-anisaldehyde and benzaldehyde under solvent-free conditions. This research elaborates the application of two different methods i.e., reflux and ultrasonication, applying potassium hydroxide (KOH) as the reagent. The progress of the Cannizzaro reaction was methodically followed via thin-layer chromatography (TLC), and the resulting products were characterized using various techniques, including melting point analysis, Fourier-transform infrared spectroscopy (FTIR), and gas chromatography-mass spectrometry (GC/MS). To measure the environmental impact and sustainability of these reactions, a multifaceted approach was used. Green metrics were evaluated by the state-of-the-art Environmental Assessment Tool for Organic Syntheses (EATOS) software, combined with the Andraos algorithm. Moreover, energy consumption calculations were evaluated. Reasonable analysis of the green metrics results was undertaken in the framework of prevailing literature, permitting to measure the level of eco-friendliness attained. Experimental findings revealed optimal conditions for the Cannizzaro reaction concerning p-anisaldehyde at a temperature of 50 °C for 90 minutes, resulting in remarkable of p-anisyl alcohol and p-anisic acid in 95.16% and 95.04% yields, respectively. Likewise, the reaction involving benzaldehyde reached its peak performance at 50 °C for 2 hours, giving benzyl alcohol and benzoic acid in 96.17% and 97.22% yields, respectively. Overall, the green metrics assessment and energy consumption calculations reliably confirmed that the solvent-free Cannizzaro reaction, when performed via ultrasonication, offers a reasonably greener and more energy-efficient method than the traditional ones. This research highlights the importance of sustainable chemical synthesis practices and their potential to reduce the environmental footprint of chemical processes.


Keywords


aldehyde, Cannizzaro, green metrics, ultrasonication

References


Abdussalam-Mohammed, W., Ali, A., & Errayes, A. (2020). Green Chemistry: Principles, Applications, and Disadvantages. Chemical Methodologies, 4(4), 408–423. https://doi.org/10.33945/sami/chemm.2020.4.4

Andraos, J. (2006). On using tree analysis to quantify the material, input energy, and cost throughput efficiencies of simple and complex synthesis plans and networks: Towards a blueprint for quantitative total synthesis and green chemistry. Organic Process Research and Development, 10(2), 212–240. https://doi.org/10.1021/op0501904

Banerjee, M., Panjikar, P. C., Das, D., Iyer, S., Bhosle, A. A., & Chatterjee, A. (2022). Grindstone chemistry: A “green” approach for the synthesis and derivatization of heterocycles. Tetrahedron, 112(1), 1–53. https://doi.org/10.1016/j.tet.2022.132753

Bhojaraj, Harley, P., & Rajamathi, M. (2019). Cannizzaro reactions over calcined hydrotalcite. Applied Clay Science, 174(January), 86–89. https://doi.org/10.1016/j.clay.2019.03.028

Constable, D. J. C., Curzons, A. D., & Cunningham, V. L. (2002). Metrics to “green” chemistry - Which are the best? Green Chemistry, 4(6), 521–527. https://doi.org/10.1039/b206169b

de Marco, B. A., Rechelo, B. S., Tótoli, E. G., Kogawa, A. C., & Salgado, H. R. N. (2019). Evolution of green chemistry and its multidimensional impacts: A review. Saudi Pharmaceutical Journal, 27(1), 1–8. https://doi.org/10.1016/j.jsps.2018.07.011

Entezari, M. H., & Shameli, A. A. (2000). Phase-transfer catalysis and ultrasonic waves I. Cannizzaro reaction. Ultrasonics Sonochemistry, 7(4), 169–172. https://doi.org/10.1016/S1350-4177(00)00037-7

Esteb, J. J., Gligorich, K. M., O’Reilly, S. A., & Richter, J. M. (2004). Solvent-free conversion of α-naphthaldehyde to 1-naphthoic acid and 1-naphthalenemethanol: Application of the Cannizzaro reaction. Journal of Chemical Education, 81(12), 1794–1795. https://doi.org/10.1021/ed081p1794

Firdaus, M., Handayani, N., & Marfu’Ah, L. T. (2016). Reduction of aldehydes using sodium borohydride under ultrasonic irradiation. Indonesian Journal of Chemistry, 16(2), 229–232. https://doi.org/10.14499/ijc-v16i2p229-232

Firdaus, M., Kusumaningsih, T., Arifagama, I., & Amin, Z. A. (2022). Solvent-less Oxidation of Aromatic Alcohols Using CrO3/Al2O3 under Ultrasonic Irradiation. Jurnal Kimia Sains Dan Aplikasi, 25(8), 37–42. https://doi.org/10.14710/jksa.25.8.280-285

Furniss, B., Hannaford, A., Smith, P., & Tatchell, A. (2011). Vogel’s Textbook of Practical Organic Chemistry. JOHN WILEY AND SONS,.

Gandhi, P. J., Talia, Y. H., & Murthy, Z. V. P. (2010). Production of p-Anisic acid by modified Williamson etherification reaction using design of experiments. Chemical Product and Process Modeling, 5(1), 1–27. https://doi.org/10.2202/1934-2659.1477

Gronnow, M. J., White, R. J., Clark, J. H., & Macquarrie, D. J. (2005). Energy efficiency in chemical reactions: A comparative study of different reaction techniques. Organic Process Research and Development, 9(4), 516–518. https://doi.org/10.1021/op0498060

Hasan, B., & Aziz, A. (2020). Prosiding 4. Identifikasi Potensi Kemandirian UMKM Di Kota Samarinda Melalui Pelatihan Manajemen Usaha, 1(1), 124–129.

Inayah, S., Dasna, I. W., & Habiddin, H. (2022). Implementasi Green Chemistry Dalam Pembelajaran Kimia: Literatur Review. Hydrogen: Jurnal Kependidikan Kimia, 10(1), 42–49. https://doi.org/10.33394/hjkk.v10i1.4611

Johnson, W., Bergfeld, W. F., Belsito, D. V., Hill, R. A., Klaassen, C. D., Liebler, D. C., Marks, J. G., Shank, R. C., Slaga, T. J., Snyder, P. W., & Andersen, F. A. (2017). Safety Assessment of Benzyl Alcohol, Benzoic Acid and its Salts, and Benzyl Benzoate. International Journal of Toxicology, 36(3_suppl), 5S-30S. https://doi.org/10.1177/1091581817728996

Kang, E. S., Chae, D. W., Kim, B., & Kim, Y. G. (2012). Efficient preparation of DHMF and HMFA from biomass-derived HMF via a Cannizzaro reaction in ionic liquids. Journal of Industrial and Engineering Chemistry, 18(1), 174–177. https://doi.org/10.1016/j.jiec.2011.11.020

Kikhtyanin, O., Lesnik, E., & Kubička, D. (2016). The occurrence of Cannizzaro reaction over Mg-Al hydrotalcites. Applied Catalysis A: General, 525, 215–225. https://doi.org/10.1016/j.apcata.2016.08.007

Kiselev, E. G., Kuzmin, A. P., & Nemtsev, I. V. (2019). Thermal and Mechanical Studies of Biofiller/Poly-3-Hydroxybutyrate Biocomposites. Journal of Siberian Federal University. Biology, 12(3), 302–310. https://doi.org/10.17516/1997-1389-0304

Kusumaningsih, T., Prasetyo, W. E., & Firdaus, M. (2020). A greatly improved procedure for the synthesis of an antibiotic-drug candidate 2,4-diacetylphloroglucinol over silica sulphuric acid catalyst: multivariate optimisation and environmental assessment protocol comparison by metrics. RSC Advances, 10(53), 31824–31837. https://doi.org/10.1039/d0ra05424k

Kusumaningsih, T., Prasetyo, W. E., Wibowo, F. R., & Firdaus, M. (2021). Toward an efficient and eco-friendly route for the synthesis of dimeric 2,4-diacetyl phloroglucinol and its potential as a SARS-CoV-2 main protease antagonist: Insight from: In silico studies. New Journal of Chemistry, 45(17), 7830–7843. https://doi.org/10.1039/d0nj06114j

Kusumaningsih, T., Sastrohamidjojo, H., & Soelistyowati, R. D. (2000). Derivatisasi Anetol Hasil Isolasi Minyak Adas. In Teknosains (Vol. 13, Issue 2, pp. 247–261).

Maity, G., Kumar, A., & Kumar, P. (2020). Green Chemistry: Synthesis of organic compounds through green approach. Journal of the Indian Chemical Society, 97(12), 2897–2902.

Mehta, N., S, J., Kumar, P., Verma, A. K., Umaraw, P., Khatkar, S. K., Khatkar, A. B., Pathak, D., Kaka, U., & Sazili, A. Q. (2022). Ultrasound-Assisted Extraction and the Encapsulation of Bioactive Components for Food Applications. Foods, 11(19), 1–35. https://doi.org/10.3390/foods11192973

Metzger, J. O., & Eissen, M. (2004). Concepts on the contribution of chemistry to a sustainable development. Renewable raw materials. Comptes Rendus Chimie, 7(6–7), 569–581. https://doi.org/10.1016/j.crci.2003.12.003

Poláčková, V., Tomová, V., Elečko, P., & Toma, Š. (1996). Ultrasound-promoted Cannizzaro reaction under phase-transfer conditions. Ultrasonics Sonochemistry, 3(1), 15–17. https://doi.org/10.1016/1350-4177(95)00040-2

Rahman, A. F. M., & Kadi, A. A. (2016). Solvent free Cannizzaro reaction applying grindstone technique. Arabian Journal of Chemistry, 9(1), S1373–S1377. https://doi.org/10.1016/j.arabjc.2012.02.010

Rajkumar, P., Buvaneswari, N., Vaheith, Z. A., Ahamed, A. F., Saraswathy, G., & Dayanandhan, R. (2021). Kinetic analysis of oxidation of α-hydroxy acids by Caro’s acid in micellar medium. Rasayan Journal of Chemistry, 14(2), 785–793. https://doi.org/10.31788/RJC.2021.1426225

Santos, D., da Rocha, E. C. L., Santos, R. L. M., Cancelas, A. J., Franceschi, E., Santos, A. F., Fortuny, M., & Dariva, C. (2017). Demulsification of water-in-crude oil emulsions using single mode and multimode microwave irradiation. Separation and Purification Technology, 189, 347–356. https://doi.org/10.1016/j.seppur.2017.08.028

Saraswati, I. G., Suter, I. K., & Wiadnyani, A. (2021). Pengaruh Jenis Pelarut Dan Rasio Bahan Dengan Pelarut Pada Metode Ultrasonikasi Terhadap Aktivitas Antioksidan Ekstrak Daun Beluntas (Pluchea indica Less) The Effect of Type of Solvent and the Ratio of Material to the Solvent by the Ultrasonication Method. Jurnal Ilmu Dan Teknologi Pangan, 10(1), 24–35.

Sharifi, A., Mojtahedi, M. M., & Saidi, M. R. (1999). Microwave irradiation techniques for the Cannizzaro reaction. Tetrahedron Letters, 40(6), 1179–1180. https://doi.org/10.1016/S0040-4039(98)02558-1

Tiwari, S., & Talreja, S. (2022). Green Chemistry and Microwave Irradiation Technique: A Review. Journal of Pharmaceutical Research International, 34(39), 74–79. https://doi.org/10.9734/jpri/2022/v34i39a36240

Wei, Q., Guo, X., Wang, Y., & Yang, H. (2013). Temperature-dependent FTIR study on three kinds of hydrogen-bonded benzoic acid dimers in their melt states. Journal of Molecular Liquids, 177, 225–228. https://doi.org/10.1016/j.molliq.2012.06.008


Full Text: PDF

DOI: 10.15408/jkv.v9i2.35641

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Maulidan Firdaus, Nisrina Rahma Firdausi, Desy Nila Rahmana, Triana Kusumaningsih

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.