The Extraction of Oxalate Acid from Porang Flour (Amorphophallus oncophyllus) using Microwave-Assisted Solvent Extraction
Abstract
Porang (Amorphophallus oncophyllus) is one of the local annual plants that contain high levels of oxalate. Oxalates are undesirable compounds in porang flour, and their levels must be removed or reduced to obtain high quality porang flour as a food ingredient. In this research, the extraction of oxalate acid was conducted using microwave-assisted solvent extraction and mechanical separation methods. This study aims to analysis the parameters that influence the extraction of oxalate acid using microwave-assisted solvent extraction such as the effect of microwave power, extraction time, feed-to-solvent ratio (F/S) and material size. The mechanical separation process will be studied the effect of material size for extraction of oxalate acid. The optimum yield obtained for oxalate acid extraction with microwave-assisted solvent extraction was microwave power of 600 W, extraction time of 30 min, feed-to-solvent ratio of 0.05 g/mL and porang size of 100 mesh obtained by oxalate acid yield of 24.78%. Porang size of 100 mesh was the optimum yield obtained for extraction of oxalate acid using mechanical separation method. The result of physical properties test using SEM-EDX and FTIR shows that extraction of oxalate acid from porang using microwave extraction method could produce oxalic acid which has good quality. In addition, extraction using microwave offers an environment-friendly extraction method, which can accelerate and increase the oxalate acid extraction yield.
Keywords
References
Sullivan JM, Williard JW, White DL, Kim YK. Production of oxalic acid via the nitric acid oxidation of hardwood (red oak) sawdust. Ind Eng Chem Prod Res Dev. 1983;22(4):699-709. doi:10.1021/i300012a036
Noonan SC, Savage G. Oxalate content of foods and its effect on humans. Asia Pac J Clin Nutr. 1999;8(1):64-74. doi:10.1046/j.1440-6047.1999.00038.x
Prychid CJ, Jabaily RS, Rudall PJ. Cellular ultrastructure and crystal development in Amorphophallus (Araceae). Ann Bot. 2008;101(7):983-995. doi:10.1093/aob/mcn022
Jansen PC., Wilk C van der, Hetterscheid WL. Amorphophallus Blume ex Decaisne . E-Prosea Detail. In: ; 1996:1-5.
Widjanarko SB, Sutrisno A, Faridah A. Effect of hydrogen peroxide on physicochemical properties of Common Konjac (Amorphophallus oncophyllus) flour by maceration and ultrasonic methods. J Teknol Pertan. 2011;12(3):143-152.
Faridah A. Comperation of porang flour ( morphophallus muelleri ) purification method : conventional maceration ( gradient ethanol leaching ) and ultrasonic maceration method using response surface methodology. Int J Adv Sci Eng Inf Technol. 2016;6(2):265-272. doi:10.18517/ijaseit.6.2.769
Chan CH, Yusoff R, Ngoh GC, Kung FWL. Microwave-assisted extractions of active ingredients from plants. J Chromatogr A. 2011;1218(37):6213-6225. doi:10.1016/j.chroma.2011.07.040
Herawati H, Kamsiati E, Pratiwi AR, Sunarmani. Effect of type and concentration of microbial starter on the characteristics of porang flour. IOP Conf Ser Earth Environ Sci. 2022;1114(1). doi:10.1088/1755-1315/1114/1/012009
Camel V. Microwave-assisted solvent extraction of environmental samples. TrAC - Trends Anal Chem. 2000;19(4):229-248. doi:10.1016/S0165-9936(99)00185-5
Hamidi N, Nur M, Wijayanti W. Peningkatan produktifitas ekstraksi minyak nilam dengan microwave hydro distillator. In: Proceeding Seminar Nasional Tahunan Teknik Mesin XIV (SNTTMXIV). ; 2015:1-5.
Kusuma HS, Mahfud M. Comparison of conventional and microwave-assisted distillation of essential oil from Pogostemon cablin leaves: Analysis and modelling of heat and mass transfer. J Appl Res Med Aromat Plants. 2017;4:55-65. doi:10.1016/j.jarmap.2016.08.002
Kumoro A, Yuganta T, Retnowati D, Ratnawati R. Acid hydrolysis and ethanol precipitation for glucomannan extraction from crude porang (Amorphophallus oncophyllus) tuber flour. Chem Chem Technol. 2018;12(1):101-108. doi:10.23939/chcht12.01.101
Nurlela, Ariesta N, Laksono DS, Santosa E, Muhandri T. Characterization of glucomannan extracted from fresh porang tubers using ethanol technical grade. Molekul. 2021;16(1):1-8. doi:10.20884/1.jm.2021.16.1.632
Bahlawan ZAS, Damayanti A, Megawati, Cahyari K, Andriani N, Hapsari RA. Study of glucomannan extraction with hydrochloric acid catalyst and alcohol solvent based on porang tuber flour (Amorphophallus oncophyllus). IOP Conf Ser Earth Environ Sci. 2021;700(1). doi:10.1088/1755-1315/700/1/012069
Franceschi VR, Nakata PA. Calcium oxalate in plants: formation and function. Annu Rev Plant Biol. 2005;56(1):41-71. doi:10.1146/annurev.arplant.56.032604.144106
Letellier M, Budzinski H. Microwave assisted extraction of organic compounds. Analusis. 1999;27(3):259-270. doi:10.1051/analusis:1999116
Kusuma HS, Mahfud M. Microwave hydrodistillation for extraction of essential oil from Pogostemon cablin Benth: Analysis and modelling of extraction kinetics. J Appl Res Med Aromat Plants. 2017;4:46-54. doi:10.1016/j.jarmap.2016.08.001
Chen L, Song D, Tian Y, Ding L, Yu A, Zhang H. Application of on-line microwave sample-preparation techniques. TrAC - Trends Anal Chem. 2008;27(2):151-159. doi:10.1016/j.trac.2008.01.003
Routray W, Orsat V. Microwave-assisted extraction of flavonoids: a review. Food Bioprocess Technol. 2012;5(2):409-424. doi:10.1007/s11947-011-0573-z
Guenther E. Essential Oil Volume 1, Translator Ketaren S. Universitas Indonesia Press; 1990.
Kumoro AC, Hartati I. Microwave assisted extraction of dioscorin from gadung (dioscorea hispida dennst) tuber flour. Procedia Chem. 2015;14:47-55. doi:10.1016/j.proche.2015.03.009
Chen Y, Xie MY, Gong XF. Microwave-assisted extraction used for the isolation of total triterpenoid saponins from Ganoderma atrum. J Food Eng. 2007;81(1):162-170. doi:10.1016/j.jfoodeng.2006.10.018
Xiao W, Han L, Shi B. Optimization of microwave-assisted extraction of flavonoid from Radix Astragali using response surface methodology. Sep Sci Technol. 2008;43(3):671-681. doi:10.1080/01496390701812509
Mandal V, Mohan Y, Hemalatha S. Microwave assisted extraction - An innovative and promising extraction tool for medicinal plant research. Pharmacogn Rev. 2007;1(1):7-18.
Zhiyi L, Xuewu L, Shuhua C, et al. An experimental and simulating study of supercritical CO2 extraction for pepper oil. Chem Eng Process Process Intensif. 2006;45(4):264-267. doi:10.1016/j.cep.2005.08.005
Kusuma HS, Putra AF., Mahfud M. Comparison of Two Isolation Methods for Essential Oils from Orange Peel (Citrus auranticum L) as a Growth Promoter for Fish: Microwave Steam Distillation and Conventional Steam Distillation. J Aquac Res Dev. Published online 2016. doi:10.4172/2155-9546.1000409
Bousbia N, Abert Vian M, Ferhat MA, Petitcolas E, Meklati BY, Chemat F. Comparison of two isolation methods for essential oil from rosemary leaves: Hydrodistillation and microwave hydrodiffusion and gravity. Food Chem. 2009;114(1):355-362. doi:10.1016/j.foodchem.2008.09.106
Wang HW, Liu YQ, Wei SL, Yan ZJ, Lu K. Comparison of microwave-assisted and conventional hydrodistillation in the extraction of essential oils from mango (Mangifera indica L.) flowers. Molecules. 2010;15(11):7715-7723. doi:10.3390/molecules15117715
Naik V, Patil N, Aparadh V, Karadge B. Methodology in Determination of Oxalic Acid in Plant Tissue: a Comparative Approach. J Glob Trends Pharm Sci. 2014;5(2):1662-1672.
DOI: 10.15408/jkv.v9i2.34706
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Ansori Ansori, Heri Septya Kusuma, Fikaputri Rohmatul Maula, Lailatul Qadariyah, Mahfud Mahfud
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.