Component Discrimination and Anti-skin-aging Potency of Emprit and Red Ginger Essential Oil: Chemometric, Molecular Docking and Molecular Dynamics Study

Badrunanto Badrunanto, Shadila Fira Asoka, Wulan Tri Wahyuni, Muhammad Farid, Setyanto Tri Wahyudi, Irmanida Batubara


Emprit and red ginger essential oils (EOs) are natural sources of antioxidants that have the potential to be used in cosmetics, one of which is as an anti-skin-aging. The aim of this study was to determine the component differences and anti-skin-aging potential of the two EOs. The components were determined by GC-MS, while discrimination was done by chemometric. The potential of the components as the anti-skin-aging were evaluated by molecular docking and molecular dynamics (MD) simulations. A total 66 components were identified in both EOs, where eucalyptol (17.92%) and camphene (15.12%) were the main component in emprit and red ginger, respectively. Chemometric analysis revealed two discriminant clusters highlighting their dissimilarity with germacrene D and α-zingiberene are the key markers for differentiation. The docking and MD simulations were demonstrated the four main components of emprit EO, namely α-curcumene, α-zingiberene, β-bisabolene and β-sesquiphellandrene, have the best docking scores and interact with the enzymes with a relatively stable interaction. AdmetSAR evaluation of the four components has shown good bioavailability and declared safe. This study succeeded in revealing two ginger EOs differences based on their components and demonstrated the emprit ginger EO was more promising as a natural anti-skin-aging agent for further research.


Anti-skin-aging; discrimination; emprit ginger; molecular docking; red ginger


Supu R, Diantini A, Levita J. Red ginger (Zingiber officinale var. rubrum): its chemical constituents, pharmacological activities and safety. FITOFARMAKA J Ilm Farm. 2019;8:23-29. doi:10.33751/jf.v8i1.1168

Höferl M, Stoilova I, Wanner J, et al. Composition and comprehensive antioxidant activity of ginger (Zingiber officinale) essential oil from Ecuador. Nat Prod Commun. 2015;10(6):1085-1090. doi:10.1177/1934578X1501000672

Apak R, Özyürek M, Güçlu K, Çapanoğlu E. Antioxidant activity/capacity measurement. 1. classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J Agric Food Chem. 2016;64(5):997-1027. doi:10.1021/acs.jafc.5b04739

Chaudhary M, Khan A, Gupta M. Skin ageing: pathophysiology and current market treatment approaches. Curr Aging Sci. 2020;13(1):22-30. doi:10.2174/1567205016666190809161115

Zhang S, Duan E. Fighting against skin aging: the way from bench to bedside. Cell Transplant. 2018;27(5):729-738. doi:10.1177/0963689717725755

Lee H, Hong Y, Kim M. Structural and functional changes and possible molecular mechanisms in aged skin. Int J Mol Sci. 2021;22(22):12489. doi:10.3390/ijms222212489

Ansary TM, Hossain MR, Kamiya K, Komine M, Ohtsuki M. Inflammatory molecules associated with ultraviolet radiation-mediated skin aging. Int J Mol Sci. 2021;22(8):3974. doi:10.3390/ijms22083974

Lee EJ, Kim JY, Oh SH. Advanced glycation end products (AGEs) promote melanogenesis through receptor for AGEs. Sci Rep. 2016;6:27848. doi:10.1038/srep27848

Jiratchayamaethasakul C, Ding Y, Hwang O, et al. In vitro screening of elastase, collagenase, hyaluronidase, and tyrosinase inhibitory and antioxidant activities of 22 halophyte plant extracts for novel cosmeceuticals. Fish Aquat Sci. 2020;23(6):1-9. doi:10.1186/s41240-020-00149-8

Younis MM, Ayoub IM, Mostafa NM, et al. GC/MS profiling, anti-collagenase, anti-elastase, anti-tyrosinase and anti-hyaluronidase activities of a Stenocarpus sinuatus leaves extract. Plants. 2022;11(7):1-19. doi:10.3390/plants11070918

Anwar S, Almatroudi A, Allemailem KS, Joseph RJ, Khan AA, Rahmani AH. Protective effects of ginger extract against glycation and oxidative stress-induced health complications: an in vitro study. Processes. 2020;8(4):1-20. doi:10.3390/pr8040468

Sahardi NFNM, Makpol S. Ginger (Zingiber officinale Roscoe) in the prevention of ageing and degenerative diseases: review of current evidence. Evid Based Complement Altern Med. 2019;2019:5054395. doi:10.1155/2019/5054395

Batubara I, Badrunanto, Wahyuni WT, Farid M. Combination of extraction and distillation red ginger rhizome on the composition of active compounds and tyrosinase inhibitory activity. IJASEIT. 2023;13(2):431-437. doi:10.18517/ijaseit.13.2.17606

Feng J, Du Z, Zhang L, et al. Chemical composition and skin protective effects of essential oil obtained from ginger (Zingiber officinale Roscoe). J Essent Oil Bear Pl. 2018;21(6):1542-1549. doi:10.1080/0972060X.2018.1533436

Asoka SF, Batubara I, Lestari AR, Wahyuni WT. Compounds in Indonesian ginger rhizome extracts and their potential for anti-skin aging based on molecular docking. Cosmetics. 2022;9(6):128. doi:doi:10.3390/cosmetics9060128

Catinella G, Badalamenti N, Ilardi V, Rosselli S, De Martino L, Bruno M. The essential oil compositions of three Teucrium taxa growing wild in Sicily: HCA and PCA analyses. Molecules. 2021;26(3):1-19. doi:10.3390/molecules26030643

Gyebi GA, Ogunyemi OM, Ibrahim IM, et al. Inhibitory potentials of phytocompounds from Ocimum gratissimum against anti-apoptotic BCL-2 proteins associated with cancer: an integrated computational study. Egypt J Basic Appl Sci. 2022;9(1):588-608. doi:10.1080/2314808X.2022.2106095

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-461. doi:10.1002/jcc.21334

Jack KS, Razip M, Bhawani SA. Pharmacophore study, molecular docking and molecular dynamic simulation of virgin coconut oil derivatives as anti-inflammatory agent against COX-2. Chem Biol Technol Agric. 2022;9(1):73. doi:10.1186/s40538-022-00340-0

Phillips JC, Braun R, Wang W, et al. Scalable, molecular dynamics with NAMD. J Comput Chem. 2005;26(16):1781-1802. doi:10.1002/jcc.20289

Lee J, Cheng X, Swails JM, et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J Chem Theory Comput. 2016;12(1):405-413. doi:10.1021/acs.jctc.5b00935

Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14(1):33-38. doi:10.1016/0263-7855(96)00018-5

Cheng F, Li W, Zhou Y, et al. AdmetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model. 2012;52(11):3099-3105. doi:10.1021/ci300367a

Jayasundara NDB, Arampath P. Effect of variety, location & maturity stage at harvesting, on essential oil chemical composition, and weight yield of Zingiber officinale roscoe grown in Sri Lanka. Heliyon. 2021;7(3):e06560. doi:10.1016/j.heliyon.2021.e06560

Nissa A, Utami R, Sari AM, Nursiwi A. Combination effect of nisin and red ginger essential oil (Zingiber officinale var. rubrum) against foodborne pathogens and food spoilage microorganisms. In: AIP Conf. Proc. Vol 2014. ; 2018:020023. doi:10.1063/1.5054427

Rinanda T, Isnanda RP, Zulfitri. Chemical analysis of red ginger (Zingiber officinale Roscoe var rubrum) essential oil and its anti-biofilm activity against Candida albicans. Nat Prod Commun. 2018;13(12):1587-1590. doi:10.1177/1934578X1801301206

El-Din MIG, Youssef FS, Altyar AE, Ashour ML. GC/MS analyses of the essential oils obtained from different Jatropha species, their discrimination using chemometric analysis and assessment of their antibacterial and anti-biofilm activities. Plants. 2022;11(1268):1-18. doi:10.3390/plants11091268

Acimovic M, Loncar B, Pezo M, et al. Volatile compounds of Nepeta nuda L. from Rtanj mountain (Serbia). horticulturae. 2022;8(2):85. doi:10.3390/horticulturae8020085

Pan X, Li H, Chen D, et al. Comparison of essential oils of Houttuynia cordata Thunb. from different processing methods and harvest seasons based on GC-MS and chemometric analysis. Int J Anal Chem. 2021;Vol. 2021:Article ID 8324169. doi:10.1155/2021/8324169

Kintamani E, Batubara I, Kusmana C, Tiryana T, Mirmanto E, Asoka SF. Essential oil compounds of andaliman (Zanthoxylum acanthopodium DC.) fruit varieties and their utilization as skin anti-aging using molecular docking. Life. 2023;13(3):754. doi:10.3390/life13030754

Wahyudi ST, Wahyuni W, Asoka S, Batubara I. Gingerol and shogaol content of Zingiber officinale var. rubrum and its potency as anti acnes based on in silico study. AIP Conf Proc. 2022;2553:20037. doi:10.1063/5.0103689

Zolghadri S, Bahrami A, Khan MTH, et al. A comprehensive review on tyrosinase inhibitors. J Enzym Inhib Med Chem. 2019;34(1):279-309. doi:10.1080/14756366.2018.1545767

Shahbaaz M, Nkaule A, Christoffels A. Designing novel possible kinase inhibitor derivatives as therapeutics against Mycobacterium tuberculosis: an in silico study. Sci Rep. 2019;9:4405. doi:10.1038/s41598-019-40621-7

Abdullahi SH, Uzairu A, Shallangwa GA, Uba S, Umar AB. Molecular docking, ADMET and pharmacokinetic properties predictions of some di-aryl pyridinamine derivatives as estrogen receptor (Er+) kinase inhibitors. Egypt J Basic Appl Sci. 2022;9(1):180-204. doi:10.1080/2314808X.2022.2050115.

Full Text: PDF

DOI: 10.15408/jkv.v9i2.32765


  • There are currently no refbacks.

Copyright (c) 2023 Irmanida Batubara

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.