Characterization Study of Dyes Photodegradation-Adsorption Products by TiO2-Chitosan Immobilized on Glass Beads using Flow System

Bella Sukma Mahadika, Asep Saefumillah, Saepurahman Saepurahman, Kiki Adi Kurnia, Diana Vanda Wellia


Dyes have a complex molecular structure that is difficult to degrade and can persist for a long time in water bodies. This study examines more thoroughly the effectiveness of photodegradation-adsorption of dyes, kinetic aspects, isotherms, thermodynamics, identification of the structure of photodegradation products, and changes in environmental quality parameter values whose results are quite satisfactory. The combination of photodegradation-adsorption of dyes by TiO2-chitosan modified glass beads using a flow system has never been accomplished before. Flowing of the dye resulted in a dye degradation efficiency of 99%. The FESEM-EDX analysis shows that TiO2-chitosan has been coated onto the surface of the glass beads. R2 of kinetics MB, MO, RB are 0.99234, 0.9889, 0.9971, which were pseudo-first order. Qm, KL, R2 are 6.4382, 0.70533, 0.99923; 16.7364, 1.42059, 0.98816; 6.0078, 1.06973, 0.99889, respectively. The ∆H, ∆S, ∆S of -9.388, -0.024, -1.979; -27.182, -0.078, -3.592; -4.819, -0.017, 0.464 indicate the exothermic and spontaneous reaction. COD, TOC, pH, turbidity values have reached the threshold required by the government. The degradation products formed during the photodegradation-adsorption process were identified using LC-MS that the structure of the dye has been degraded to become simpler so that it is safely disposed of into the environment.


Degradation product; dyes; TiO2; chitosan; glass beads


Abbasi, A., Ikram, S. (2022). Fabrication of a novel green bio-composite for sequestration of Victoria Blue from aquatic medium: Isotherm, Kinetics, and Thermodynamic investigations. Chemical Physics Letters, 800(April), 139665.

Amini-Badr, A., Behnajady, M. A. (2022). Photocatalytic removal of cefazolin in a photoreactor packed with TiO2-P25 nanoparticles supported on glass beads: an artificial neural network modeling. International Journal of Environmental Analytical Chemistry, 00(00), 1–19.

Aoudjit, L., Zioui, D., Touahra, F., Mahidine, S., Bachari, K. (2021). Photocatalytic degradation of tartrazine dyes using TiO2–chitosan beads under sun light irradiation. Russian Journal of Physical Chemistry A, 95(5), 1069–1076.

Balarabe, B. Y., Maity, P. (2022). Visible light-driven complete photocatalytic oxidation of organic dye by plasmonic Au-TiO2 nanocatalyst under batch and continuous flow condition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 655(August), 130247.

Bernal, V., Giraldo, L., Moreno-Piraján, J. C. (2020). Insight into adsorbate–adsorbent interactions between aromatic pharmaceutical compounds and activated carbon: equilibrium isotherms and thermodynamic analysis. Adsorption, 26(2), 153–163.

Bläker, C., Pasel, C., Luckas, M., Dreisbach, F., Bathen, D. (2017). Investigation of load-dependent heat of adsorption of alkanes and alkenes on zeolites and activated carbon. Microporous and Mesoporous Materials, 241, 1–10.

Boughrara, L., Zaoui, F., Guezzoul, M., Sebba, F. Z., Bounaceur, B., Kada, S. O. (2022). New alginic acid derivatives ester for methylene blue dye adsorption: kinetic, isotherm, thermodynamic, and mechanism study. International Journal of Biological Macromolecules, 205(February), 651–663.

Djamila, Z., Hugo S., Lamine A., Pedro M. M., Senentxu, L. M. (2020). Polymer-based membranes for oily wastewater remediation. Polymers, 12(42).

Eddy, D. R., Nursyamsiah, D., Permana, M. D., Solihudin, Noviyanti, A. R., Rahayu, I. (2022). Green production of zero-valent iron (ZVI) using tea-leaf extracts for fenton degradation of mixed rhodamine b and methyl orange dyes. Materials, 15(1).

Fathana, H., Rahmi, R. Lubis, S., Adlim, M., Muktaridha, O., Ikhramullah, M. (2022). Fabrication and investigation of new TiO2/amino acids modified chitosan for methylene blue removal via adsorption and photodegradation. Research square.

Hoang, N. T. T., Tran, A. T. K., Hoang, M. H., Nguyen, T. T. H., Bui, X. T. (2021). Synergistic effect of TiO2 /chitosan/glycerol photocatalyst on color and COD removal from a dyeing and textile secondary effluent. Environmental Technology and Innovation, 21, 101255.

Joshi, S., Ippolito, S. J., Sunkara, M. V. (2016). Convenient architectures of Cu2O/SnO2 type II p-n heterojunctions and their application in visible light catalytic degradation of rhodamine B. RSC Advances, 6(49), 43672–43684.

Kgatle, M., Sikhwivhilu, K., Ndlovu, G., Moloto, N. (2021). Degradation kinetics of methyl orange dye in water using. Catalysts, 11, 428.

Nguyen, T. B., Doong, R. an, Huang, C. P., Chen, C. W., Dong, C. Di. (2019). Activation of persulfate by CoO nanoparticles loaded on 3D mesoporous carbon nitride (CoO@meso-CN) for the degradation of methylene blue (MB). Science of the Total Environment, 675, 531–541.

Patehkhor, H. A., Fattahi, M., Khosravi-Nikou, M. (2021). Synthesis and characterization of ternary chitosan–TiO2–ZnO over graphene for photocatalytic degradation of tetracycline from pharmaceutical wastewater. Scientific Reports, 11(1), 1–17.

Prashantha Kumar, T. K. M., Ashok Kumar, S. K. (2019). Visible-light-induced degradation of rhodamine B by nanosized Ag2S-ZnS loaded on cellulose. Photochemical and Photobiological Sciences, 18(1), 148–154.

Rasheed, T., Bilal, M., Iqbal, H. M. N., Shah, S. Z. H., Hu, H., Zhang, X., Zhou, Y. (2018). TiO2/UV-assisted rhodamine B degradation: putative pathway and identification of intermediates by UPLC/MS. Environmental Technology (United Kingdom), 39(12), 1533–1543.

Ren, Z., Wang, Z., Lv, L., Ma, P., Zhang, G., Li, Y., Qin, Y., Wang, P., Liu, X., Gao, W. (2022). Fe–N complex biochar as a superior partner of sodium sulfide for methyl orange decolorization by combination of adsorption and reduction. Journal of Environmental Management, 316(April), 115213.

Riaz, U., Ashraf, S. M., Farooq, M. (2015). Effect of pH on the microwave-assisted degradation of methyl orange using poly(1-naphthylamine) nanotubes in the absence of UV–visible radiation. Colloid and Polymer Science, 293(4), 1035–1042.

Rosdiana, E. A., Basid, N., Prasetya, A., Gunawan, G. (2023). Synthesis and characterization of TiO2-chitosan beads and its application as a degradation agent of methylene blue. Trends in Sciences, 20(9). DOI:10.48048/tis.2023.6670

Sarkar, S., Banerjee, A., Chakraborty, N., Soren, K., Chakraborty, P., Bandopadhyay, R. (2020). Structural-functional analyses of textile dye degrading azoreductase, laccase and peroxidase: A comparative in silico study. Electronic Journal of Biotechnology, 43, 48–54.

Srivastava, V., Choubey, a. K. (2022). Novel PVA/chitosan composite membrane modified using bio fabricated α-MnO2 nanoparticles for photocatalytic degradation of cationic dyes. Environmental Science and Pollution Research, 30: 35838–35852.

Sultana, T., Dey, S. C., Molla, M. A. I., Hossain, M. R., Rahman, M. M., Quddus, M. S., Moniruzzaman, M., Shamsuddin, S. M., Sarker, M. (2021). Facile synthesis of TiO2/Chitosan nanohybrid for adsorption-assisted rapid photodegradation of an azo dye in water. Reaction Kinetics, Mechanisms and Catalysis, 133(2), 1121–1139.

Sun, X., Xu, D., Dai, P., Liu, X., Tan, F., Guo, Q. (2020). Efficient degradation of methyl orange in water via both radical and non-radical pathways using Fe-Co bimetal-doped MCM-41 as peroxymonosulfate activator. Chemical Engineering Journal, 402(May), 125881.

Tran, A. T. K., Hoang, N. T. T., Nguyen, T. T. H. (2022). Combination of photocatalytic degradation and adsorption in dye removal by TiO2-chitosan-glycerol beads under natural sunlight. IOP Conference Series: Earth and Environmental Science, 964(1).

Vieira, M. L. G., Pinheiro, C. P., Silva, K. A., Lutke, S. F., Cadaval, T. R. S. A., Dotto, G., Pinto, L. A. de A. (2019). Chitosan and cyanoguanidine-crosslinked chitosan coated glass beads and its application in fixed bed adsorption. Chemical Engineering Communications, 206(11), 1485–1497.

Viriya, K. (2012). Uji Kinerja Fotoreaktor Silinder Berputar Skala Pilot Untuk Pengolahan Limbah Fenol Dengan Menggunakan Katalis TiO2/ZAL. Fakultas teknik program studi teknik kimia Universitas Indonesia.

Full Text: PDF

DOI: 10.15408/jkv.v9i1.31855


  • There are currently no refbacks.

Copyright (c) 2023 Bella Sukma Mahadika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.